Project description:Primary objectives: The study investigates whether a Escherichia coli Nissle-suspenison has a (preventive) antidiarrheal effect in patients with tumors who are treated with chemotherapeutic schemes which are associated with increased occurances of diarrhea. Diarrhea caused by treatment are thought to be reduced in intensity and/or frequency by the treatment with Escherichia coli Nissle-Suspension.
Primary endpoints: Common toxicity criteria (CTC) for diarrhea
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:In the bacterium Escherichia coli, RecG directs DNA synthesis during the repair of DNA double-strand breaks by homologous recombination. Examination of RecA binding during double-strand break repair in Escherichia coli in the presence and absence of RecG protein
Project description:The goals of this project were: to use transcriptomics as a starting point for reverse engineering the NO response network of E. coli, and to identify the targets responsible for NO-induced bacteriostasis. The data is associated with Hyduke DR*, Jarboe LR*, Tran LM, Chou KJY, Liao JC 2007 "Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. "Proc. Natl. Acad. Sci. USA 104(20):8484-8489. Keywords: Comparative genomic response.
Project description:Here we have developed a method that combines chromatin immunoprecipitation with next-generation sequencing (ChIP-Seq) and mathematical modeling to quantify RecA protein binding during the active repair of a single DSB in the chromosome of Escherichia coli. Examination of RecA binding during double-strand break repair in Escherichia coli
Project description:The transcriptional changes in Escherichia coli upon induction of the SOS response are investigated by utilizing custom designed oligonucleotide microarrays. Keywords: Gene expression during the SOS response in Escherichia coli