Project description:Green hydra (Hydra viridissima) harbors endosymbiotic Chlorella and have established a mutual relation. To identify the host hydra genes involved in the specific symbiotic relationship, transcriptomes of intact H. viridissima colonized with symbiotic Chlorella strain A99, aposymbiotic H.viridissima and H. viridissima artificially infected with other symbiotic Chlorella were compared by microarray analysis. The results indicated that genes involved in nutrition supply to Chlorella were upregulated in the symbiotic hydra. In addition, it was induced by supply of photosynthates from the symbiont to the host, suggesting cooperative metabolic interaction between the host and the symbiotic algae.
2018-04-01 | GSE97633 | GEO
Project description:Coral symbiotic algae
| PRJNA699996 | ENA
Project description:Diversity of algal and bacterial symbiotic systems
Project description:Brown algae synthesize various polysaccharides that are ultimately catabolized by marine heterotrophic bacteria. Complex cell wall polysaccharides such as sulfated fucans are considered recalcitrant to microbial degradation and their pathways remain elusive. The branched structure of fucans sterically constraints enzyme-substrate interaction and also, fucan structure varies depending on algae and season challenging adaptation of microbial pathways. Here we show how Lentimonas specialized to overcome the complexity and diversity of sulfated fucans. The strain acquired a 0.9 mbp plasmid with over 200 glycoside hydrolases and sulfatases for the degradation of at least six different sulfated fucans. Per fucan, 100 enzymes are induced and we identified three structural types of fucans with similar pathways depending on their galactose, acetate and sulfate content. The highly decorated structure sulfated fucans expands the copy number and diversity of few key enzyme families, namely GH29, GH95, GH141 and sulfatases S1_15, S1_16 and S1_17. Those enzymes are co-regulated in large operons to step-wise degrade sulfated fucans. Fucose metabolism places additional burden as the conversion of toxic intermediates into lactate and propanediol occurs in a proteome-costly bacterial microcompartment. Through analyzing available genomes and metagenomes, we emphasize that Verrucomicrobia are abundant, yet specialized degraders of complex polysaccharides.
Project description:Emergence of the symbiotic lifestyle fostered the immense diversity of all ecosystems on Earth, but symbiosis plays a particularly remarkable role in marine ecosystems. Photosynthetic dinoflagellate endosymbionts power reef ecosystems by transferring vital nutrients to their coral hosts. The mechanisms driving this symbiosis, specifically those which allow hosts to discriminate between beneficial symbionts and pathogens, are not well understood. Here, we uncover that host immune suppression is key for dinoflagellate endosymbionts to avoid elimination by the host using a comparative, model systems approach. Unexpectedly, we find that the clearance of non-symbiotic microalgae occurs by non-lytic expulsion (vomocytosis) and not intracellular digestion, the canonical mechanism used by professional immune cells to destroy foreign invaders. We provide evidence that suppression of TLR signalling by targeting the conserved MyD88 adapter protein has been co-opted for this endosymbiotic lifestyle, suggesting that this is an evolutionarily ancient mechanism exploited to facilitate symbiotic associations ranging from coral endosymbiosis to the microbiome of vertebrate guts.
Project description:Emergence of the symbiotic lifestyle fostered the immense diversity of all ecosystems on Earth, but symbiosis plays a particularly remarkable role in marine ecosystems. Photosynthetic dinoflagellate endosymbionts power reef ecosystems by transferring vital nutrients to their coral hosts. The mechanisms driving this symbiosis, specifically those which allow hosts to discriminate between beneficial symbionts and pathogens, are not well understood. Here, we uncover that host immune suppression is key for dinoflagellate endosymbionts to avoid elimination by the host using a comparative, model systems approach. Unexpectedly, we find that the clearance of non-symbiotic microalgae occurs by non-lytic expulsion (vomocytosis) and not intracellular digestion, the canonical mechanism used by professional immune cells to destroy foreign invaders. We provide evidence that suppression of TLR signalling by targeting the conserved MyD88 adapter protein has been co-opted for this endosymbiotic lifestyle, suggesting that this is an evolutionarily ancient mechanism exploited to facilitate symbiotic associations ranging from coral endosymbiosis to the microbiome of vertebrate guts.
Project description:Animal regeneration requires coordinated responses of many cell types throughout the animal body. In animals carrying endosymbionts, cells from the other species may also participate in regeneration, but how cellular responses are integrated across species is yet to be unraveled. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis green algae and can regenerate entire bodies from small tissue fragments. We show that animal injury leads to a decline in the photosynthetic efficiency of the symbiotic algae and concurrently induces upregulation of a cohort of photosynthesis-related genes. A deeply conserved animal transcription factor, runt, is induced after injury and required for the acoel regeneration. Knockdown of runt also dampens algal transcriptional responses to the host injury, particularly in photosynthesis related pathways, and results in further reduction of photosynthetic efficiency post-injury. Our results suggest that the runt-dependent animal regeneration program coordinates wound responses across the symbiotic partners and regulates photosynthetic carbon assimilation in this metaorganism.
Project description:Our research describe the influence of aeration conditions in petri dishes for A. thaliana growth. We analyze the difference between plants grown in standard Petri dish (Non-aerated) and modified Petri dish that include aeration (Aerated). To characterize the differences between those conditions the gene expression analysis was performed. We also wanted to analyze the effect of using a micropore filter, so we designed another experiment with Aerated, Non-aerated and Micropore filter conditions.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.