Project description:Drug resistance and distant metastases are leading causes of mortality in colorectal cancer (CRC), yet the molecular mechanisms linking these processes remain elusive. In this study, we demonstrate that acquired resistance to oxaliplatin, a first-line chemotherapeutic in CRC, enhances metastatic potential through transcriptional reprogramming. Using a clinically relevant dosing regimen, we generated oxaliplatin-resistant CRC cells that displayed increased metastatic potential. Integrated transcriptomic and phenotypic analyses revealed that dysregulated cholesterol biogenesis amplifies TGF-b signaling, which in turn drives expression of SERPINE1, that serves as a key effector of both oxaliplatin resistance and metastasis. Furthermore, we uncovered a SERPINE1-associated nine-gene expression signature, RESIST-M, that robustly predicts overall and relapse-free survival across distinct patient cohorts. Notably, RESIST-M stratifies a high-risk subtype of CMS4/iCMS3-fibrotic patients that display the poorest prognosis, underscoring its clinical relevance. Targeting of SERPINE1 or cholesterol biosynthesis re-sensitized resistant, pro-metastatic cells to oxaliplatin in mouse xenograft models. Altogether, this study uncovers a mechanistic link between metabolic rewiring and transcriptional plasticity underlying therapy-induced metastasis in primary CRC. Additionally, it also reveals actionable vulnerabilities that offer both prognostic value and therapeutic potential.
Project description:Gene expression between DLD1 and DLD1 derived oxaliplatin resistant clones (DLD/OHP1, DLD/OHP4, and DLD/OHP5) was assessed Gene expression between HCT116 and HCT116 derived oxaliplatin resistant clones (HCT/OHP1, HCT/OHP3, and HCT/OHP5) was assessed
Project description:Oxaliplatin resistance frequently leads to therapeutic failure in colorectal cancer (CRC). Increasing evidence has shown that noncoding RNAs (ncRNAs) play pivotal roles in chemoresistance of CRC. However, the roles and mechanisms of ncRNAs in oxaliplatin resistance are not well understood. In this study, to identify the ncRNAs induced by oxaliplatin, we profile the expression of ncRNAs in oxaliplatin-resistant HCT116 CRC cells (HCT116oxR) and parental HCT116 cells using next-generation sequencing technology.
Project description:Resistance to chemotherapy drugs, including oxaliplatin, remains a major challenge in the treatment of colorectal cancer, often leading to treatment failure and poor patient outcomes. Overcoming chemoresistance by sensitizing tumor cells represents a critical therapeutic goal. Adenoviral early region 1A (E1A) has been proposed as a promising gene therapy agent capable of modulating cellular pathways to enhance sensitivity to chemotherapeutic agents. This dataset contains RNA-seq profiling of human colorectal cancer cell lines that are either oxaliplatin-sensitive (HCT116) or oxaliplatin-resistant (HCT116 oxpl-R), treated with oxaliplatin, in the context of doxycycline-induced adenoviral E1A expression. The experiment includes eight conditions: untreated controls, E1A expression alone, oxaliplatin treatment alone, and combined E1A expression with oxaliplatin treatment, each in both sensitive and resistant cell lines. The comprehensive experimental design enables the dataset to be divided into three independent analyses: A) Comparison of baseline transcriptomic profiles between oxaliplatin-sensitive and resistant cells (conditions 1 and 5); B) Investigation of the transcriptional response to oxaliplatin in sensitive and resistant cells (conditions 1, 3, 5, and 7); C) Evaluation of the impact of adenoviral E1A expression on the transcriptomes of sensitive and resistant cells alone (conditions 1, 2, 5, and 6) and in combination with oxaliplatin treatment (all eight conditions); This dataset provides valuable insights into the molecular mechanisms underlying oxaliplatin resistance and the potential role of E1A gene therapy in sensitizing colorectal cancer cells to chemotherapy.
Project description:To explore the mechanisms associated with oxaliplatin resistance, we compared gene expression in xenograft tumors derived from human colorectal cancer tumor cells HCT116 and its oxaliplatin resistant clones (HCT/OHP1 and HCT/OHP5).
Project description:Drug resistance and distant metastases are leading causes of mortality in colorectal cancer (CRC), yet the molecular mechanisms linking these processes remain elusive. In this study, we demonstrate that acquired resistance to oxaliplatin, a first-line chemotherapeutic in CRC, enhances metastatic potential through transcriptional reprogramming. Using a clinically relevant dosing regimen, we generated oxaliplatin-resistant CRC cells that displayed increased metastatic potential. Integrated transcriptomic and phenotypic analyses revealed that dysregulated cholesterol biogenesis amplifies TGF-b signaling, which in turn drives expression of SERPINE1, that serves as a key effector of both oxaliplatin resistance and metastasis. Furthermore, we uncovered a SERPINE1-associated nine-gene expression signature, RESIST-M, that robustly predicts overall and relapse-free survival across distinct patient cohorts. Notably, RESIST-M stratifies a high-risk subtype of CMS4/iCMS3-fibrotic patients that display the poorest prognosis, underscoring its clinical relevance. Targeting of SERPINE1 or cholesterol biosynthesis re-sensitized resistant, pro-metastatic cells to oxaliplatin in mouse xenograft models. Altogether, this study uncovers a mechanistic link between metabolic rewiring and transcriptional plasticity underlying therapy-induced metastasis in primary CRC. Additionally, it also reveals actionable vulnerabilities that offer both prognostic value and therapeutic potential.
Project description:Drug resistance and distant metastases are leading causes of mortality in colorectal cancer (CRC), yet the molecular mechanisms linking these processes remain elusive. In this study, we demonstrate that acquired resistance to oxaliplatin, a first-line chemotherapeutic in CRC, enhances metastatic potential through transcriptional reprogramming. Using a clinically relevant dosing regimen, we generated oxaliplatin-resistant CRC cells that displayed increased metastatic potential. Integrated transcriptomic and phenotypic analyses revealed that dysregulated cholesterol biogenesis amplifies TGF-beta signaling, which in turn drives expression of SERPINE1, that serves as a key effector of both oxaliplatin resistance and metastasis. Furthermore, we uncovered a SERPINE1-associated nine-gene expression signature, RESIST-M, that robustly predicts overall and relapse-free survival across distinct patient cohorts. Notably, RESIST-M stratifies a high-risk subtype of CMS4/iCMS3-fibrotic patients that display the poorest prognosis, underscoring its clinical relevance. Targeting of SERPINE1 or cholesterol biosynthesis re-sensitized resistant, pro-metastatic cells to oxaliplatin in mouse xenograft models. Altogether, this study uncovers a mechanistic link between metabolic rewiring and transcriptional plasticity underlying therapy-induced metastasis in primary CRC. Additionally, it also reveals actionable vulnerabilities that offer both prognostic value and therapeutic potential.
Project description:HCT116 parental, HCT116 5-FU resistant and HCT116 oxaliplatin resistant cells have been transiently treated with with their respective drug (5-FU or oxaliplatin) for 0, 6 12 or 24h in 3 independent experiments.