Project description:TDP-43 mislocalization and pathology occurs across a range of neurodegenerative diseases, but the pathways that modulate TDP-43 in neurons are not well understood. We generated a Halo-TDP-43 knock-in iPSC line and performed a genome-wide CRISPR interference FACS-based screen to identify modifiers of TDP-43 levels in neurons. A meta-analysis of our screen and publicly available screens identified both specific hits and pathways present across multiple screens, the latter likely responsible for generic protein level maintenance. We identified BORC, a complex required for anterograde lysosome transport, as a specific modifier of TDP-43 protein, but not mRNA, levels in neurons. BORC loss led to longer half-life of TDP-43 and other proteins, suggesting lysosome location is required for proper protein turnover. As such, lysosome location and function are crucial for maintaining TDP-43 protein levels in neurons.
Project description:TDP-43 mislocalization and pathology occurs across a range of neurodegenerative diseases, but the pathways that modulate TDP-43 in neurons are not well understood. We generated a Halo-TDP-43 knock-in iPSC line and performed a genome-wide CRISPR interference FACS-based screen to identify modifiers of TDP-43 levels in neurons. A meta-analysis of our screen and publicly available screens identified both specific hits and pathways present across multiple screens, the latter likely responsible for generic protein level maintenance. We identified BORC, a complex required for anterograde lysosome transport, as a specific modifier of TDP-43 protein, but not mRNA, levels in neurons. BORC loss led to longer half-life of TDP-43 and other proteins, suggesting lysosome location is required for proper protein turnover. As such, lysosome location and function are crucial for maintaining TDP-43 protein levels in neurons.
Project description:Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.
Project description:Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although mutations in TARDBP, encoding TDP-43, account for less than 1% of all ALS cases, TDP-43-positive aggregates are present in nearly all ALS patients, including patients with sporadic ALS (sALS) or carrying other familial ALS (fALS)-causing mutations. Interestingly, TDP-43 inclusions are also present in subsets of patients with frontotemporal dementia, Alzheimer’s disease, and Parkinson’s disease; therefore, methods of activating intracellular protein quality control machinery capable of clearing toxic cytoplasmic TDP-43 species may alleviate disease-related phenotypes. Here, we identify a novel function of Nemo-like kinase (Nlk) as a negative regulator of lysosome biogenesis. Genetic or pharmacological reduction of Nlk increased lysosome formation and improved clearance of aggregated TDP-43. Furthermore, Nlk reduction ameliorated pathological, behavioral, and lifespan deficits in two distinct mouse models of TDP-43 proteinopathy. Because many toxic proteins can be cleared along the autophagy-lysosome axis, targeted reduction of Nlk represents a potential approach to therapy development for multiple neurodegenerative disorders.
Project description:TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations and three healthy controls. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry-based proteomics. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, proteomics analyses also show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.
Project description:Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of ALS patients, but the contribution of axonal TDP-43 to this fatal neurodegenerative disease is unclear. Here, we find TDP-43 accumulation in the axons of intra-muscular nerves from ALS patients, and in motor neurons and neuromuscular junctions(NMJs) of a mouse model with TDP-43 mislocalization. This leads to the formation of G3BP1- and TDP-43-positive RNA-granules in motor neuron axons, and to inhibition of local protein synthesis in axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondria proteins are reduced. Clearance of axonal TDP-43 restored local translation of the nuclear-encoded mitochondrial proteins and rescued TDP-43-derived axonal and NMJ toxicity. These findings suggest that targeting TDP-43 axonal gain of function may mediata therapeutic effect in ALS.
Project description:Localized mRNA translation regulates synapse function and axon maintenance, but how compartment-specific mRNA repertoires are regulated is largely unknown. We developed an axonal transcriptome capture method that allows deep sequencing of metabolically-labeled mRNAs from retinal ganglion cell axon terminals in mouse. Comparing axonal-to-somal transcriptomes and axonal translatome-to-transcriptome enables genome-wide visualization of mRNA transport and translation and unveils potential regulators tuned to each process. FMRP and TDP-43 stand out as key regulators of transport, and experiments in Fmr1 knock-out mice validate FMRP’s role in the axonal transportation of synapse-related mRNAs. Pulse-and-chase experiments enable genome-wide assessment of mRNA stability in axons and reveal a strong coupling between mRNA translation and decay. Measuring the absolute mRNA abundance per axon terminal shows that the axonal transcriptome is stably maintained in adulthood by persistent transport. Our datasets provide a rich resource for unique insights into RNA-based mechanisms in maintaining presynaptic structure and function in vivo.
Project description:Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function
Project description:Despite considerable evidence that RNA-binding proteins (RBPs) regulate mRNA transport and local translation in dendrites, roles for axonal RBPs are poorly understood. Here we demonstrate that a nontelomeric isoform of telomere repeat-binding factor 2 (TRF2-S) is a novel RBP that regulates axonal plasticity. TRF2-S interacts directly with target mRNAs to facilitate their axonal delivery. The process is antagonized by fragile X mental retardation protein (FMRP). Distinct from the current RNA-binding model of FMRP, we show that FMRP occupies the GAR domain of TRF2-S protein to block the assembly of TRF2-S-mRNA complexes. Overexpressing TRF2-S and silencing FMRP promotes mRNA entry to axons, and enhances axonal outgrowth and neurotransmitter release from presynaptic terminals. Our findings suggest a pivotal role for TRF2-S in an axonal mRNA localization pathway that enhances axon outgrowth and neurotransmitter release.
Project description:Despite considerable evidence that RNA-binding proteins (RBPs) regulate mRNA transport and local translation in dendrites, roles for axonal RBPs are poorly understood. Here we demonstrate that a nontelomeric isoform of telomere repeat-binding factor 2 (TRF2-S) is a novel RBP that regulates axonal plasticity. TRF2-S interacts directly with target mRNAs to facilitate their axonal delivery. The process is antagonized by fragile X mental retardation protein (FMRP). Distinct from the current RNA-binding model of FMRP, we show that FMRP occupies the GAR domain of TRF2-S protein to block the assembly of TRF2-S-mRNA complexes. Overexpressing TRF2-S and silencing FMRP promotes mRNA entry to axons, and enhances axonal outgrowth and neurotransmitter release from presynaptic terminals. Our findings suggest a pivotal role for TRF2-S in an axonal mRNA localization pathway that enhances axon outgrowth and neurotransmitter release. RNA immunoprecipitated samples using either anti-rat TRF2-S or rabbit IgG antibodies were used to generate biotin-labeled RNA using the Illumina Total Prep RNA Amplification Kit (Ambion), which was hybridized to Illumina's rat Ref-12 Expression BeadChips (Illumina, San Diego, CA), containing 22,523 well-annotated RefSeq transcripts with ~30-fold redundancy. The arrays were scanned using an Illumina BeadStation 500X Genetic Analysis Systems scanner and the image data extracted using Illumina BeadStudio software, version 1.5, normalized by Z-score transformation and used to calculate differences in signal intensities. Significant values were calculated from two groups of independent experiments, using a two-tailed Z-test with P < 0.05, a false discovery rate <0.30, a z ratio absolute value not less than 1.5, and an average signal intensity not less than zero. The results also had to pass the filtering and one-way independent ANOVA test by sample groups less than 0.05, and detection p-value for any probe in the comparison group less than 0.02.