Project description:In this study, we analyzed transcriptome sequencing data to compare CELF2 RNA binding protein regulation in multiple myeloma cell line
Project description:<h4><strong>BACKGROUND:</strong> Multiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.</h4><h4><strong>METHODS:</strong> Here, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.</h4><h4><strong>RESULTS:</strong> A decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the 'low-risk' ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.</h4><h4><strong>CONCLUSIONS & GENERAL SIGNIFICANCE: </strong>In conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.</h4>
Project description:Multiple myeloma is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, multiple myeloma remains incurable and better risk stratification as well as new therapies are therefore highly needed. The proteome of multiple myeloma has not been systematically assessed before and holds the potential to uncover additional insight into disease biology and improved prognostic models. Here, we provide a comprehensive multi-omics analysis including deep tandem mass tags (TMT)-based quantitative global (phospho)proteomics, RNA sequencing and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive multiple myeloma patients treated in clinical trials, plasma cell leukemia, and the premalignancy monoclonal gammopathy of undetermined significance (MGUS), as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells is highly deregulated as compared to healthy plasma cells and is both defined by chromosomal alterations and extensive post-transcriptional regulation. A protein signature was identified that is associated with aggressive disease and more predictive for outcome than cytogenetic-based risk assessment in newly diagnosed multiple myeloma. Integration with functional genetics and single-cell sequencing revealed generally and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include novel potential targets for (immuno)therapies. These findings provide new insights in the biology of multiple myeloma and will be a unique resource for investigating new therapeutic approaches.
Project description:Multiple myeloma is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, multiple myeloma remains incurable and better risk stratification as well as new therapies are therefore highly needed. The proteome of multiple myeloma has not been systematically assessed before and holds the potential to uncover additional insight into disease biology and improved prognostic models. Here, we provide a comprehensive multi-omics analysis including deep tandem mass tag (TMT)-based quantitative global (phospho)proteomics, RNA sequencing and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive multiple myeloma patients treated in clinical trials, plasma cell leukemia, and the premalignancy monoclonal gammopathy of undetermined significance (MGUS), as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells is highly deregulated as compared to healthy plasma cells and is both defined by chromosomal alterations and extensive post-transcriptional regulation. A protein signature was identified that is associated with aggressive disease and more predictive for outcome than cytogenetic-based risk assessment in newly diagnosed multiple myeloma. Integration with functional genetics and single-cell sequencing revealed generally and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include novel potential targets for (immuno)therapies. These findings provide new insights in the biology of multiple myeloma and will be a unique resource for investigating new therapeutic approaches.
Project description:To investigate the function of CELF2 in non-melanoma skin cancer, we performed immunofluorescence staining studies and found lower CELF2 expression in human squamous cell carcinoma (SCC) tumors than in adjacent normal skin. CELF2 expression was also downregulated during both ultraviolet light- and chemical-induced skin tumorigenesis in mice, suggesting that CELF2 loss might promote skin cancer development. By using shRNA-mediated knockdown (KD) of CELF2 expression, we showed that CELF2 deficiency significantly increased SCC cell proliferation and colony growth in vitro and increased SCC tumor growth in a xenograft mouse model. Although control SCC cells were sensitive to anticancer drugs such as doxorubicin, CELF2-KD SCC cells were resistant to drug-induced tumor growth retardation. Through RNA-seq analysis, we identified that CELF2 loss led to activation of KRT80 and GDF15, which could confer growth and survival advantages to CELF2-deficient SCC cells.