Project description:The transcription factors MEF2C, GATA4, and TBX5 (MGT) are well established for converting fibroblasts into induced cardiomyocytes (iCMs). However, these reprogramming factors contain effector domains, yet their functional roles in cardiac reprogramming remain largely uncharacterized. Furthermore, whether internal deletions of these domains improve or compromise reprogramming efficiency has not been elucidated. Here we found that the combination of MEF2C and GATA4 mutants (MΔGΔT) elevated reprogramming efficiency by 7-fold to ~21%, achieving robust induction of iCMs with well-defined sarcomeric structures.
Project description:Cardiac transcription factors (TFs) directly reprogram fibroblasts into induced cardiomyocytes (iCMs), where Mef2c acts as a pioneer factor with Gata4 and Tbx5 (GT). However, generation of functional and mature iCMs is inefficient and molecular mechanisms underlying this process remains largely unknown. Here we found that transduction of transcriptionally activated Mef2c via fusion of the powerful MyoD transactivation domain increased generation of beating iCMs by 30-fold in combination with GT.
Project description:Direct cardiac reprogramming converts fibroblasts into induced cardiomyocytes (iCMs) with the minimal combination of transcription factors, Gata4 (G), Mef2c (M), and Tbx5 (T). However, the induction of functional mature iCMs is inefficient and the mechanisms remain elusive. Mef2c is a central transcription factor in direct cardiac reprogramming. We investigated the effect of Mef2c isoforms(M1, M2, M6) and transcriptional activity (M2TAD) on cardiac reprogramming on cardiac reprogramming. Then, we found that the active form of Mef2c evoked epigenetic remodeling cooperating with p300 and promoted the maturation of iCMs.
Project description:Direct reprogramming of fibroblasts into cardiomyocytes (CMs) represents a promising strategy to regenerate CMs lost after ischemic heart injury. Overexpression of GATA4, HAND2, MEF2C, TBX5, miR-1, and miR-133 (GHMT2m) along with transforming growth factor beta (TGFbeta) inhibition efficiently promotes reprogramming. However, the mechanisms by which TGFbeta; blockade promotes cardiac reprogramming remain unknown. Here, we identify interactions between the histone H3 lysine 27 trimethylation (H3K27me3), demethylase JMJD3, the SWI/SNF remodeling complex subunit BRG1, and cardiac transcription factors. Furthermore, canonical TGFbeta; signaling regulates the interaction between GATA4 and JMJD3. TGF-beta; activation impairs the ability of GATA4 to bind target genes and prevents demethylation of H3K27 at cardiac gene promoters during cardiac reprogramming. Finally, a mutation in GATA4 (V267M) exhibits reduced binding to JMJD3 and impaired cardiomyogenesis. Thus, we have identified an epigenetic mechanism wherein canonical TGFbeta; pathway activation impairs cardiac gene programming by interfering with GATA4-JMJD3 interactions.
Project description:The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D, hnRNP D) binds to numerous mRNAs and influences their post-transcriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RIP (RNP immunoprecipitation) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor Mef2c. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3’UTR of Mef2c mRNA and promoted Mef2c translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring Mef2c expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that Mef2c is a key effector of the myogenesis program promoted by AUF1. Keywords: ribonucleoprotein complex; post-transcriptional gene regulation; muscle cell differentiation; myocytes; mRNA translation; mRNA stability; post-transcriptional gene regulation; transcriptome
Project description:Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). Here, we show that MCHS-associated missense mutations cluster in the conserved DNA binding domain and disrupt MEF2C DNA binding. DNA binding-deficient global Mef2c heterozygous mice (Mef2c-Het) display numerous MCHS-like behaviors, including autism-related behaviors, as well as deficits in cortical excitatory synaptic transmission. We find that hundreds of genes are dysregulated in Mef2c-Het cortex, including significant enrichments of autism risk and excitatory neuron genes. In addition, we observe an enrichment of upregulated microglial genes, but not due to neuroinflammation in the Mef2c-Het cortex. Importantly, conditional Mef2c heterozygosity in forebrain excitatory neurons reproduces a subset of the Mef2c-Het phenotypes, while conditional Mef2c heterozygosity in microglia reproduces social deficits and repetitive behavior. Together our findings suggest that MEF2C regulates typical brain development and function through multiple cell types, including excitatory neuronal and neuroimmune populations.
Project description:Vibrio vulnificus is an foodborne pathogen that can cause gastroenteritis and septicemia in humans. V. vulnificus secretes a multifunctional autoprocessing repeats-in-toxin (MARTX) toxin as an essential virulence factor to cause disease. MARTX toxins are pore-forming toxins that translocate multiple functionally independent effector domains into a target cell. MARTX toxins of V. vulnificus can contain anywhere from 3 to 5 of the 10 identified effector domains and strains with different effector repertories having varying virulence potential. The goal of this study was to compare how different effector combinations from an F-type MARTX toxin differentially remodel the transcriptional response of human intestinal epithelial cells (IECs). F-type MARTX toxins contain five effector domains – the actin crosslinking domain (ACD), two copies the makes caterpillar floppy-like domain (MCF), and alpha-beta hydrolase (ABH) domain, and the Ras/Rap1 specific endopeptidase (RRSP). Cultured human IECs were treated with V. vulnificus or strains modified to secrete a toxin with only ACD, ACD with MCF-ABH, ACD with RRSP, or no active effectors. We demonstrate that when no active effectors are present, the bacterium induces minimal changes in the transcriptional profile of IECs. However, the strains containing different effector combinations each uniquely remodeled the transcriptional profile of IECs. These data provide insight into how V. vulnificus strains with varying effector combinations can differentially regulate the host cell response to cause disease.
Project description:In acute myeloid leukemia, chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that transgenic Mef2cS222A/S222A mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9. MEF2C phosphorylation was required for leukemia stem cell maintenance, induced by MARK kinases in cells, and blocked by selective MARK inhibitor MRT199665, which caused apoptosis of MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C. These findings identify signaling-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.
Project description:Transient over-expression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Over-expression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 significantly enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors significantly enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca2+ transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies. Mouse embryonic fibroblasts were transduced lentiviruses allowing the inducible overexpression of three unique sets of transcription factors and negative control. A total of four experimental groups which included three biological replicates in each.