Project description:In order to elucidate the role of the Arabidopsis thaliana LLM-domain B-GATAs in response to high light intensities, a transcriptomic analysis of Col-0, a hexuple LLM-domain B-GATA mutant hex (gnc gnl gata15 gata16 gata17 gata17l) and GNLox under high-ligh stress conditions was performed.
Project description:High light stress in subtropical and tropical regions strongly limits agricultural production due to photo-oxidative damage, decreased growth and yield. Here, we investigated whether beneficial microbes can protect plants under high light stress. We show that Enterobacter sp. SA187 (SA187) assists Arabidopsis in maintaining growth under high light stress, reducing the accumulation of reactive oxygen species (ROS) and maintaining photosynthesis. Under high light stress, SA187 induces dynamic transcriptional changes related to a fortified iron metabolism and redox system in Arabidopsis. A genetic analysis shows that SA187-induced plant high light stress tolerance is mediated by ethylene signaling via the transcription factor EIN3 to enhance iron metabolism. In summary, we show that Arabidopsis interaction with SA187 results in sustained photosynthesis under high light stress suggesting that beneficial microbes could be effective and cheap means for enhancing high light stress tolerance in crops.
Project description:This experiment profiled a time series of gene expression in leaf 7 of Arabidopsis thaliana plants grown in a controlled environment under 8 h light: 16 h dark (i.e. short days) to compare to the profiles analysed in Breeze et al. (2011) Plant Cell 23(3):873-94 under long day conditions.