Project description:We used two wheat genotypes, the susceptible wheat cultivar ‘8866 ’(S) and its near isogenic line with single powdery mildew resistance gene ‘pm30’ (R), to investigate gene expression changes in response to powdery mildew infection by using Wheat Genome Array
Project description:We used two wheat genotypes, the susceptible wheat cultivar ‘8866 ’(S) and its near isogenic line with single powdery mildew resistance gene ‘pm30’ (R), to investigate gene expression changes in response to powdery mildew infection by using Wheat Genome Array wheat young leveas of near isogenic lines before or 12 hours after powdery mildew infection were selected for RNA extraction and hybridization on Affymetrix microarrays.The leaf samples were harvested from three independent biological replicates, and the leaves without inoculation were regarded as control.
Project description:It has been demonstrated that wheat overexpressing Pm3b, an allele of the R gene Pm3, has enhanced resistance against powdery mildew under field conditions. A gene expression profile study using GeneChip® Wheat Genome Array was performed to obtain insights into the mode of action of Pm3b and to elucidate the molecular basis of pleiotropic effects observed in three out of four independent transgenic events tested under field conditions. 24 samples were analyzed. Three biological replicates of each sample were included. Two independent transformation events and respective null segregants as control treated with fungicide or artificially inoculated with powdery mildew.
Project description:It has been demonstrated that wheat overexpressing Pm3b, an allele of the R gene Pm3, has enhanced resistance against powdery mildew under field conditions. A gene expression profile study using GeneChip® Wheat Genome Array was performed to obtain insights into the mode of action of Pm3b and to elucidate the molecular basis of pleiotropic effects observed in three out of four independent transgenic events tested under field conditions.
Project description:To test whether non-coding RNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing and computational analysis and experimental approach we cloned the small RNAs and identified 125 putative long npcRNAs from wheat leaves infected by preponderant physiological strain Erysiphe graminis f. sp. tritici (Egt) or by heat stress treatment. Among long non-coding RNAs, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. Wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress.
Project description:Powdery mildew is a very common plant disease and only few plants are immune. Host interactions have been identified and characterized for the pathosystems barley-B. graminis f. sp. tritici (Bgt) and wheat-B. graminis f. sp. hordei (Bgh), whereas no data are reported about powdery mildew and nonhost plants, such as rice. On the other hand rice nonhost resistance is widely unexploited and only few expression data are available. To characterize rice response during nonhost interaction with Bgh, a global expression analysis was performed by using the GeneChip® Rice Genome Array. To describe rice gene expression profiles during nonhost interaction, 2 week-old rice plantlets were inoculated with Bgh. Treated (inoculated) and control (mock) samples were collected 24 hours post-inoculation for GeneChip® Rice Genome Array hybridization.
Project description:To identify genes involved in susceptibility, genechip hybridization experiments were performed in order to examine genes differentially expressed upon inoculation of resistant and susceptible wheat cultivars with powdery mildew. Some genes were identified which were just expressed in the susceptible host both after mock-inoculation and pathogen infection. Also, a total of 2693 transcripts were differentially expressed (fold change≥2) in Yumai 13 in response to powdery mildew as compared to itself, comprising 1464 and 1229 up- and down-regulated genes respectively.
Project description:We generated ChIP-Seq data for two barley accessions with different resistance to powdery mildew. These data allowed us to explore the roles of epigenetic modifications in resistance response to powdery mildew at the first time. Our study opens the way for establishing the relationship between epigenetics and disease response in barley, and should inform future functional characterization of the regarding molecular basis. These data should also help researchers to exploit disease response-related genes for breeding application.
Project description:To identify genes involved in susceptibility, genechip hybridization experiments were performed in order to examine genes differentially expressed upon inoculation of resistant and susceptible wheat cultivars with powdery mildew. Some genes were identified which were just expressed in the susceptible host both after mock-inoculation and pathogen infection. Also, a total of 2693 transcripts were differentially expressed (fold change≥2) in Yumai 13 in response to powdery mildew as compared to itself, comprising 1464 and 1229 up- and down-regulated genes respectively. Seven-day-old wheat seedlings of susceptible cultivar Yumai 13, two resistant cultivars HY and CYC were inoculated with powdery mildew and harvested at 0, 24, 48 hpi for RNA extraction and hybridization on Affymetrix microarrays. We sought to screen some genes which have very high expression in Yumai 13, but not in CYC and HY by pairwise comparation.