Project description:Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5 – 2 μg Cd g-1 dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids.
2012-07-31 | GSE39679 | GEO
Project description:Arabidopsis thaliana transgenic Data
Project description:Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5 M-bM-^@M-^S 2 M-NM-<g Cd g-1 dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids. Genomic DNA from two F2 progeny pools (low leaf Cd pool and high leaf Cd pool) of CS28181 x Col-0 was labelled and hybridized separately to the Affymetrix SNP-tiling array AtSNPtile. The signal intensity difference between the two pools for all probes were analyzed using R scripts that are available at http://ars.usda.gov/mwa/bsasnp .
Project description:The Arabidopsis thaliana Myb transcription factor, FE, acts as a key regulator of phase transition. In order to identify potential target genes of FE protein, we performed microarray experiments. Using fe-1 and transgenic plants overexpressing GR-tagged FE (35S::FE-GR), we compared transcriptional profiling of WT (L.er) vs fe-1 and Dex-treated 35S::FE-GR vs Mock-treated 35S::FE-GR. Transcriptional profiling of A. thaliana comparing WT (L.er) with the fe-1 mutant
Project description:The genome-wide target genes of transcription factors MYC2 and MYC3 were determined in etiolated (dark-grown) seedlings of Arabidopsis thaliana. Chromatin immunoprecipition of MYC2 and MYC3 was performed as described in O’Malley et al (2016; doi: 10.1016/j.cell.2016.04.038), using transgenic A. thaliana expressing MYC2::YpET and MYC3::YpET fusion proteins from their native promoters, generated by recombineering (Gimenez-Ibanez et al. 2017; doi: 10.1111/nph.14354 ). Three-day old etiolated seedlings were treated with methyl JA for 2 h (as described in Schweizer et al., 2013), then harvested for ChIP-Seq.
Project description:In this study we analyzed the effect of overexpression of an HA-tagged version of the ERF RAP2.12 on the transcriptome levels in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes. We also analyzed the effect of a RAP2.12 and RAP2.2 simultaneous silencing in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes. We treated Arabidopsis Col-0 (wt) rosettes and transgenic HA::RAP2.12 and amiRAP2.2-12 , 5-week old, grown in 8/16 light/dark photoperiod with: -Control (22°C, dark, 21% O2, 1.5h). -Hypoxia (22°C, dark, 1% O2, 1.5h).
Project description:Plant Topless-related 1 (TPR1), belonging to a family of transcriptional corepressors found across eukaryotes, contributes to immunity signaling in Arabidopsis thaliana and wild tobacco. We used chromatin immunoprecipitation and sequencing (ChIP-seq) of Arabidopsis TPR1-GFP expressing transgenic lines to characterize genome-wide TPR1-chromatin associations.
2020-04-25 | GSE149316 | GEO
Project description:ChIP-Seq of transgenic Arabidopsis Thaliana
Project description:Expression profiles of MicroRNA and SiRNA of Arabidopsis thaliana Col-0 and transgenic plants with constitutive expression of the chimeric receptors NRG1 grown at different temperature To reveal the underlying molecular mechanism of de-cosuppression with memory by high temperature in Arabidopsis, we performed the expression profiles of microRNA and SiRNA in transgenic plants with constitutive expression of the chimeric receptors NRG1 and wide type Col-0 grown at different temperature using the Custom LC Sciences Arabidopsis microRNA and SiRNA array. Keywords: high temperature, de-cosuppression, MicroRNA, SiRNA