Project description:Food waste is a major source of environmental pollution, as its landfills attribute to greenhouse gas emissions. This study developed a robust upcycling bioprocess that converts food waste into lactic acid through autochthonous fermentation and further produces biodegradable polymer polyhydroxybutyrate (PHB). Food can be stored without affecting its bioconversion to lactic acid, making it feasible for industrial application. Mapping autochthonous microbiota in the food waste fermentation before and after storage revealed lactic-acid-producing microorganisms dominate during the indigenous fermentation. Furthermore, through global transcriptomic and gene set enrichment analyses, it was discovered that coupling lactic acid as carbon source with ammonium sulfate as nitrogen source in Cupriavidus necator culture upregulates pathways, including PHB biosynthesis, CO2 fixation, carbon metabolism, pyruvate metabolism, and energy metabolism compared to pairing with ammonium nitrate. There was ∼90 % PHB content in the biomass. Overall, the study provides crucial insights into establishing a bioprocess for food waste repurposing.
Project description:Clostridium acetobutylicum is a Gram positive, endospore forming firmicute that has been known as the model organims for ABE (acetone-butanol-ethanol) fermentation. With its ability to consume a wide variety of substrates, C. acetobutylicum carries out a biphasic ABE fermentation, which consists of the acidogenic growth phase with the formation of butyric acid and acetic acid, followed by the solventogenic stationary phase with the formation of acetone, butanol and ethanol, characterised by the reassimilation of acids. The production butanol is of renewed ineterest both as a potential biofuel and bulk chemical production. Both butanol and butyric acid posses toxic characteristic and here, we focus on understanding and modeling the stress response of C. acetobutylicum to one of the two important toxic metabolites: butyric acid.
Project description:Clostridium acetobutylicum is a Gram positive, endospore forming firmicute that has been known as the model organims for ABE (acetone-butanol-ethanol) fermentation. With its ability to consume a wide variety of substrates, C. acetobutylicum carries out a biphasic ABE fermentation, which consists of the acidogenic growth phase with the formation of butyric acid and acetic acid, followed by the solventogenic stationary phase with the formation of acetone, butanol and ethanol, characterised by the reassimilation of acids. The production butanol is of renewed ineterest both as a potential biofuel and bulk chemical production. Both butanol and butyrate posses toxic characteristic and here, we focus on understanding and modeling the stress response of C. acetobutylicum to one of the two important toxic metabolites: butanol.
Project description:Acetogens are promising cell factories for producing fuels and chemicals from waste feedstocks via gas fermentation, but quantitative characterization of carbon, energy, and redox metabolism is required to guide their rational metabolic engineering. Here, we explore acetogen gas fermentation using physiological, metabolomics, and transcriptomics data for Clostridium autoethanogenum steady-state chemostat cultures grown on syngas at various gas-liquid mass transfer rates. We observe that C. autoethanogenum shifts from acetate to ethanol production to maintain ATP homeostasis at higher biomass concentrations but reaches a limit at a molar acetate/ethanol ratio of ∼1. This regulatory mechanism eventually leads to depletion of the intracellular acetyl-CoA pool and collapse of metabolism. We accurately predict growth phenotypes using a genome-scale metabolic model. Modeling revealed that the methylene-THF reductase reaction was ferredoxin reducing. This work provides a reference dataset to advance the understanding and engineering of arguably the first carbon fixation pathway on Earth.
Project description:Gas fermentation is emerging as an economically attractive option for the sustainable production of fuels and chemicals from gaseous waste feedstocks. Clostridium autoethanogenum can use CO and/or CO2 + H2 as its sole carbon and energy sources. Fermentation of C. autoethanogenum is currently being deployed on a commercial scale for ethanol production. Expanding the product spectrum of acetogens will enhance the economics of gas fermentation. To achieve efficient heterologous product synthesis, limitations in redox and energy metabolism must be overcome. Here, we engineered and characterised at a systems-level, a recombinant poly-3-hydroxybutyrate (PHB)-producing strain of C. autoethanogenum. Cells were grown in CO-limited steady-state chemostats on two gas mixtures, one resembling syngas (20% H2) and the other steel mill off-gas (2% H2). Results were characterised using metabolomics and transcriptomics, and then integrated using a genome-scale metabolic model reconstruction. PHB-producing cells had an increased expression of the Rnf complex, suggesting energy limitations for heterologous production. Subsequent optimisation of the bioprocess led to a 12-fold increase in the cellular PHB content. The data suggest that the cellular redox state, rather than the acetyl-CoA pool, was limiting PHB production. Integration of the data into the genome-scale metabolic model showed that ATP availability limits PHB production. Altogether, the data presented here advances the fundamental understanding of heterologous product synthesis in gas-fermenting acetogens.
2019-02-03 | GSE115837 | GEO
Project description:Bacterial community in food waste fermentation