Project description:The possibility of establishing a Clostridium-based biorefinery is an attractive and viable alternative, due to the wide metabolic versatility of these microorganisms. The Bioprocesses and Bioprospecting group of the Universidad Nacional de Colombia has obtained the genome of Clostridium sp. IBUN13A, which has shown the ability to produce solvents from various substrates and postulated the need to expand the knowledge of the physiology of the bacteria, so, this study establishes the differences in the transcriptomic profile of the strain when it is cultivated in glycerol respect to glucose after 24 hours of fermentation. For this, a RNA-seq study was carried out, and some of the genes that increased its expression on glycerol were related to the oxidative route of its consumption. The enrichment analysis of Gene Ontology terms showed that the biological phenomena with the highest representation within the differentially expressed genes correspond to oxidation-reduction processes. This first approach to the global transcriptomic study of glycerol fermentation allows the understanding of the metabolism of the microorganism with the purpose of choosing targets for genetic modification.
Project description:The yeast Saccharomyces cerevisiae is an important component of the wine fermentation process and determines various attributes of the final product. However, lactic acid bacteria (LAB) are also an integral part of the microflora of any fermenting must. Various wine microorganism engineering projects have been endeavoured in the past in order to change certain wine characteristics, namely aroma compound composition, ethanol concentration, levels of toxic/ allergenic compounds etc. Most of these projects focus on a specific gene or pathway, whereas our approach aims to understand the genetically complex traits responsible for these phenotypes in a systematic manner by implementing a transcriptomic analysis of yeast in mixed fermentations with the LAB O. oeni. Our aim is to investigate interactions between yeast and LAB on a gene expression level to identify targets for modification of yeast and O. oeni in a directed manner. Our goal was to identify the impact that the common wine microorganism O. oeni (malolactic bacteria) has on fermenting yeast cells on a gene expression level. To this end we co-inoculated the yeast and bacteria at the start of fermentation in a synthetic wine must, using yeast-only fermentations witout O. oeni as a control. Fermentations were carried out in synthetic wine must in triplicate for both the control S. cerevisiae VIN13 strain and the mixed fermentation of VIN13 and O. oeni (strain S5). Sampling of yeast for RNA extractions were performed at day 3 of fermentation, during the exponential growth phase of the yeast cells, and again at day 7 of fermentation, during the early stationary growth phase.
Project description:Clostridium sp. strain CT7 is a new emerging microbial cell factory with high butanol ratio owing to the non-traditional butanol fermentation mode with uncoupled acetone and 1,3-propanediol formation. Significant change of products profile was shown in glycerol- and glucose-fed strain CT7, especially much higher butanol and lower volatile fatty acids production from glycerol-fed one. However, the mechanism of this interesting phenomenon was still unclear. To better elaborate the bacterial response towards glycerol and glucose, the quantitative proteomic analysis through iTRAQ strategy was performed to reveal the regulated proteomic expression levels under different substrates. Proteomics data showed highly increased proteomic expression levels of proteins related with glycerol utilization and solvent generation under glycerol media. In addition, the up-regulation of hydrogenases, ferredoxins and electron-transferring proteins may attribute to the internal redox balance, while the earlier triggered sporulation response in glycerol-fed media may be associated with the higher butanol fermentation. This study will provide the platform for metabolic engineering of this emerging industrial microorganism for more efficient butanol production from glycerol.
Project description:The yeast Saccharomyces cerevisiae is an important component of the wine fermentation process and determines various attributes of the final product. However, lactic acid bacteria (LAB) are also an integral part of the microflora of any fermenting must. Various wine microorganism engineering projects have been endeavoured in the past in order to change certain wine characteristics, namely aroma compound composition, ethanol concentration, levels of toxic/ allergenic compounds etc. Most of these projects focus on a specific gene or pathway, whereas our approach aims to understand the genetically complex traits responsible for these phenotypes in a systematic manner by implementing a transcriptomic analysis of yeast in mixed fermentations with the LAB O. oeni. Our aim is to investigate interactions between yeast and LAB on a gene expression level to identify targets for modification of yeast and O. oeni in a directed manner. Our goal was to identify the impact that the common wine microorganism O. oeni (malolactic bacteria) has on fermenting yeast cells on a gene expression level. To this end we co-inoculated the yeast and bacteria at the start of fermentation in a synthetic wine must, using yeast-only fermentations witout O. oeni as a control.