Project description:Metagenomic methods provide a powerful means to investigate complex ecological phenomena. Developed originally for study of Bacteria and Archaea, the application of these methods to eukaryotic microorganisms is yet to be fully realized. Most prior environmental molecular studies of eukaryotes have relied heavily on PCR amplification with eukaryote-specific primers. Here we apply high throughput short-read sequencing of poly-A selected RNA to capture the metatranscriptome of an estuarine dinoflagellate bloom. To validate the metatranscriptome assembly process we simulated metatranscriptomic datasets using short-read sequencing data from clonal cultures of four algae of varying phylogenetic distance. We find that the proportion of chimeric transcripts reconstructed from community transcriptome sequencing is low, suggesting that metatranscriptomic sequencing can be used to accurately reconstruct the transcripts expressed by bloom-forming communities of eukaryotes. To further validate the bloom metatransciptome assembly we compared it to a transcriptomic assembly from a cultured, clonal isolate of the dominant bloom-causing alga and found that the two assemblies are highly similar. Eukaryote-wide phylogenetic analyses reveal the taxonomic composition of the bloom community, which is comprised of several dinoflagellates, ciliates, animals, and fungi. The assembled metatranscriptome reveals the functional genomic composition of a metabolically active community. Highlighting the potential power of these methods, we found that relative transcript abundance patterns suggest that the dominant dinoflagellate might be expressing toxin biosynthesis related genes at a higher level in the presence of competitors, predators and prey compared to it growing in monoculture.
Project description:We report 293 Neisseria gonorrhoeae genes that show differential transcript abundance in response to 15 mM hydrogen peroxide treatment by RNA-Seq. We analyze the major physiological functional groups of genes affected by hydrogen peroxide exposure. In addition, we analyze which genes in our hydrogen peroxide-responsive set of genes belong to major known transcriptional regulatory circuits like iron homeostasis, anaerobiosis and others. We annotate which of the 293 hydrogen peroxide-responsive genes belong to operons. We annotate global transcriptional start sites and identify transcriptional start sites that are only present in hydrogen peroxide-treated bacteria. We validate the RNA-Seq data for a subset of representative genes by RT-qPCR and whether transcript abundance in this same subset of genes differs upon treatement with other reactive oxygen species encountered during infection, like organic peroxide, super oxide anion, and bleach.
Project description:The transcriptomic response of Jurkat T lymphoma cells to hydrogen peroxide was investigated to determine the global effects of hydrogen peroxide on cellular gene expression.
Project description:Reactive oxygen species such as hydrogen peroxide occur in all aerobically living organisms. Oxidative stress during fermentation can impair the fitness of the production host and the quality of the product. B. pumilus has been described as highly resistant to hydrogen peroxide. The response of exponentially growing B. pumilus cells to hydrogen peroxide was studied.
Project description:To gain insight into the basic mechanism of Hydrogen peroxide detoxification in the methylotrophic yeast, H. polymorpha, we analyzed changes in transcriptional profiles in response to hydrogen peroxide exposure.
Project description:Acinetobacter baumannii is a Gram-negative opportunistic pathogen that causes multiple infections, including pneumonia, bacteremia, and wound infections. Due to multiple intrinsic and acquired drug-resistance mechanisms, A. baumannii isolates are commonly multi-drug resistant and infections are notoriously difficult to treat. Therefore, it is important to identify mechanisms used by A. baumannii to survive stresses encountered during infection as a means of identifying new drug targets. In this study, we determined the transcriptional response of A. baumannii to hydrogen peroxide stress using RNASequencing. Upon exposure to hydrogen peroxide, A. baumannii differentially transcribes several hundred genes. In this study, we also determined the transcriptional profile of A. baumannii strains with the transcriptional regulators mumR or oxyR genetically inactivated and identified transcriptional differences between these strains and wild-type A. baumannii in response to hydrogen peroxide stress. In doing this, the function of A. baumannii OxyR in hydrogen peroxide stress resistance and regulation of genes required for hydrogen peroxide detoxification was defined. Moreover, the contribution of the uncharacterized regulator MumR to hydrogen peroxide stress resistance was also explored. This work reveals the transcriptome of an important human pathogen in the presence of hydrogen peroxide stress.
Project description:Transcriptional profiling of Escherichia coli K-12 comparing luxS mutant LW12 with wild type W3110 exposure to 10mM or 30mM hydrogen peroxide. Two-condition experiment, luxS mutant LW12 vs. wild type W3110, treatment with 10mM hydrogen peroxide for 30min or treatment with 30mM hydrogen peroxide for 30min. Two biological replicates.
Project description:Purpose: Identification of transcriptionally active genes in the unculturable community constituent, Smithella, during hexadecane degradation; Differential gene expression analysis of hexadecane-relevant genes acoss three different conditions; Extension of metatranscriptomic datasets to other community constituents to identify interspecies relationships.
Project description:Reactive oxygen species such as hydrogen peroxide occur in all aerobically living organisms. Oxidative stress during fermentation can impair the fitness of the production host and the quality of the product. B. pumilus has been described as highly resistant to hydrogen peroxide. The response of exponentially growing B. pumilus cells to hydrogen peroxide was studied. Two-condition experiment, unstressed versus hydrogen peroxide stressed cells, 3 biological replicates
Project description:Transcripitonal profiling of Escherichia coli K-12 W3110 comparing cells with and without hydrogen peroxide treatment, two biological replicates each One-condition experiment, cells with or without hydrogen peroxide treatment for 10min