Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Fecal samples collected on day 5 from randomly selected colitic SD rats were analyzed for gut microbiota by sequencing the V4 region of the 16S rRNA gene. The orally administered Dex-P-laden NPA2 coacervate (Dex-P/NPA2) significantly restores the diversity of gut microbiota compared with colitic SD rats in the Dex-P/PBS group and the untreated colitic rats (Control).
Project description:Gut intraepithelial lymphocytes (IELs) are one of the few immune cell populations in the body that expresses glucagon-like 1 receptors (GLP-1R). To test the potential effects of GLP-1 on the gut microbiota through the gut IEL GLP-1R, we performed 16s rRNA seq on the DNA isolated from the fecal pellet of Lck-Cre; Glp1rfl/fl mice (Glp1rTcell-/-) or controls (Glp1rTcell+/+) fed a high-fat diet (HFD) for 12 weeks followed by 1 week of HFD plus semaglutide (10 ug/kg) or vehicle treatment. Fecal pellets from a group of age-matched, sex-matched control mice were included as a chow control group.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:This study in rats was designed to investigate whether whole rhye (WR) can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). Total bacterial DNA was extracted from fecal and cecal samples (n=5 per group). 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 15 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either mice fecal and cecal samples. Each probe (4441) was synthetized in three replicates.
Project description:We used 16S V3/V4 region amplification to evaluate the composition of bacteria species in mouse fecal pellets. Fecel pellets were collected from young-adult (12 weeks old) wild type C57Bl/6 mice and aged (72 weeks old) wild type C57Bl/6 mice after 21 days of vehicle or antibiotics treatment (to induce gut microbiota depletion). In one sequencing round, we sequenced a total of 12 different fecal samples (3 young control, 3 aged control, 3 young depleted gut microbiota (ABX) and 3 aged depleted gut microbiota (ABX)). Amplicons were indexed using the Nextera XT Index Kit and pooled into a library for Illumina sequencing.
Project description:Gut microbial profiling of uterine fibroids (UFs) patients comparing control subjects. The gut microbiota was examined by 16S rRNA quantitative arrays and bioinformatics analysis. The goal was to reveal alterations in the gut microbiome of uterine fibroids patients.
Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed 16S rRNA sequencing to identify potential microbiota changes associated with Paneth cell defect in Atg16l1 T300A mice exposed to cigarette smoking. Female mice were used at 4-5 weeks of age. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. The fecal samples from the mice were collected for 16S rRNA sequencing analysis after completing 6 weeks of smoking.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:Adequate sleep is essential for relieving stress and rejuvenating the mind; however, undesirable physiological and pathological responses resulting from sleep insufficiency or sleep deprivation (SD) are becoming increasingly common. However, the influence of sleep deficiency on gut microbiota and microbiota-associated human diseases, especially on cardiac diseases remain controversial. Here, we constructed the experimental SD model in mice and found it significantly resulted in weakness, depression-like behaviors, and multiple organs dysfunction. Intriguingly, SD mice developed pathogenic cardiac hypertrophy and fibrosis with poor ejection fraction as well as fractional shortening. 16s rRNA sequencing demonstrated that SD-induced the pathogenic effects of gut microbiota, which was also observed in mice received by fecal microbe from SD mice in fecal microbiota transplantation (FMT) assays. Next, we investigated the therapeutic effects and underlying mechanisms of oxygen therapy in gut microbiota-associated cardiac fibrosis and dysfunction. The environment of 30% oxygen concentration effectively ameliorated the pathological effects on cardiac function. Transcriptome data also found oxygen therapy targeted several hypoxia-dependent pathways and suppressed cardiac collagen production. In conclusion, these results indicated the importance of sufficient sleep in gut microbiota and may represent a potential therapeutic strategy of oxygen environment exerts protective effects in sleepless sufferings through gut microbiota.