Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Fecal samples collected on day 5 from randomly selected colitic SD rats were analyzed for gut microbiota by sequencing the V4 region of the 16S rRNA gene. The orally administered Dex-P-laden NPA2 coacervate (Dex-P/NPA2) significantly restores the diversity of gut microbiota compared with colitic SD rats in the Dex-P/PBS group and the untreated colitic rats (Control).
Project description:Gut intraepithelial lymphocytes (IELs) are one of the few immune cell populations in the body that expresses glucagon-like 1 receptors (GLP-1R). To test the potential effects of GLP-1 on the gut microbiota through the gut IEL GLP-1R, we performed 16s rRNA seq on the DNA isolated from the fecal pellet of Lck-Cre; Glp1rfl/fl mice (Glp1rTcell-/-) or controls (Glp1rTcell+/+) fed a high-fat diet (HFD) for 12 weeks followed by 1 week of HFD plus semaglutide (10 ug/kg) or vehicle treatment. Fecal pellets from a group of age-matched, sex-matched control mice were included as a chow control group.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:This study in rats was designed to investigate whether whole rhye (WR) can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). Total bacterial DNA was extracted from fecal and cecal samples (n=5 per group). 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 15 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either mice fecal and cecal samples. Each probe (4441) was synthetized in three replicates.
Project description:We used 16S V3/V4 region amplification to evaluate the composition of bacteria species in mouse fecal pellets. Fecel pellets were collected from young-adult (12 weeks old) wild type C57Bl/6 mice and aged (72 weeks old) wild type C57Bl/6 mice after 21 days of vehicle or antibiotics treatment (to induce gut microbiota depletion). In one sequencing round, we sequenced a total of 12 different fecal samples (3 young control, 3 aged control, 3 young depleted gut microbiota (ABX) and 3 aged depleted gut microbiota (ABX)). Amplicons were indexed using the Nextera XT Index Kit and pooled into a library for Illumina sequencing.
Project description:Gut microbial profiling of uterine fibroids (UFs) patients comparing control subjects. The gut microbiota was examined by 16S rRNA quantitative arrays and bioinformatics analysis. The goal was to reveal alterations in the gut microbiome of uterine fibroids patients.
Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed 16S rRNA sequencing to identify potential microbiota changes associated with Paneth cell defect in Atg16l1 T300A mice exposed to cigarette smoking. Female mice were used at 4-5 weeks of age. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. The fecal samples from the mice were collected for 16S rRNA sequencing analysis after completing 6 weeks of smoking.
Project description:Lean nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a distinct clinical phenotype with limited evidence for effective non-pharmacological interventions and unclear mechanistic pathways. Aerobic exercise is recommended for NAFLD management, yet its effects and underlying gut microbiota–mediated mechanisms in lean NAFLD remain insufficiently characterized. This study is based on a randomized controlled trial (ClinicalTrials.gov identifier: NCT04882644) in which 100 adults with lean NAFLD were randomly assigned to a 3-month aerobic exercise intervention or usual care. 63 paired fecal samples were collected at baseline and after intervention. Gut microbiota profiles were generated using 16S rRNA gene sequencing. The dataset includes processed taxonomic abundance tables derived from fecal samples collected before and after the intervention. These data were used to characterize exercise-induced alterations in gut microbial diversity, composition, and functional potential, and to explore interindividual heterogeneity in microbiota responses to aerobic exercise in lean NAFLD. The microbiome data deposited in this series support integrative analyses with clinical phenotypes and circulating metabolomic profiles, aiming to elucidate gut microbiota–associated mechanisms underlying the metabolic benefits of aerobic exercise in lean NAFLD.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.