Project description:Cystic Fibrosis Related Diabetes (CFRD), the main co-morbidity in Cystic Fibrosis (CF), is associated with higher rates of lung function decline. We hypothesize that airway epithelial barrier function is impaired in CF and is further exacerbated under hyperglycemia, worsening pulmonary outcomes. Using 16HBE cells as a model cell line, we studied the effects of hyperglycemia in airway epithelial barrier function. Results show increased paracellular dye flux in CF cells in response to insulin treatment under hyperglycemia, suggesting impaired barrier integrity. Gene expression experiments identified Claudin-4 (CLDN4) as a key tight junction protein dysregulated in CF cells. Further investigation into CLDN4 protein localization by confocal microscopy showed that CLDN4 was tightly localized at tight junctions in WT cells and localization did not change under hyperglycemia. ln contrast, CLDN4 was less well-localized in CF cells at normal glucose and localization was worsened in CF cells conditioned to hyperglycemia. Treatment with highly effective modulator compounds (ETI) reversed this trend, and CFTR rescue by ETI in CF cells was not affected by insulin treatment or hyperglycemia. Bulk RNA sequencing showed differences in transcriptional responses in CF compared to WT cells under normal or high glucose, highlighting PTPRG as a promising target for further investigation.
Project description:Elexacaftor/tezacaftor/ivacaftor (ETI) CFTR modulator therapy has led to rapid and substantial improvements in cystic fibrosis (CF) airway disease. Underlying molecular and cellular mechanisms, long-term efficacy, and ability to reverse airway epithelial remodeling in established disease remain unclear. Longitudinal nasal brushes from an adult CF cohort were used to evaluate gene expression, cellular composition, stem cell function, and microbiome changes at baseline and at six months and two years after ETI. The baseline to six month span showed a massive downregulation of extensive neutrophilic inflammatory gene expression programs that correlated with increased pulmonary function and decreased sinusitis. Primary airway epithelial stem cell cultures from matched donor samples showed partially improved differentiation and barrier capacity at six months. Although clinical outcomes remained stable during the six month to two year span, transcriptional changes revealed a resurgence of baseline inflammatory programs. Time course gene expression was consistent with ongoing normalization of epithelial remodeling. Relative abundance of Pseudomonas also decreased during the time course. These data suggest that ETI rectifies inflammation, epithelial remodeling, and bacterial infection in the airways, but resurgence of inflammatory gene expression may indicate ongoing inflammation, potentially presaging disease progression with long-term therapy.
Project description:Elexacaftor/tezacaftor/ivacaftor (ETI, Trikafta) is highly effective treatment for many cystic fibrosis patients, at least partly because it increases CFTR mediated Cl- and HCO3- secretion by airway epithelial cells leading to improved lung function and less frequent exacerbations and hospitalizations. However, little is known about how ETI affects airway epithelial cells in ways not related to CFTR mediated Cl- and HCO3- secretion, for example how ETI affects the expression of genes other than CFTR or how ETI might affect airway cells’ response to infection. It is established that CF airway cells bearing the delta F 508 mutation the CFTR gene respond characteristically differently from wild type CFTR cells, and we hypothesized that, as a highly effective CFTR modulator, ETI might make airway cells from CF donors respond to pathogen stimulation (Pseudomonas aeruginosa PA14 or outer membrane vesicles isolated from these bacteria) in more the same way that cells from wild type, healthy control cells do. We tested this hypothesis by measuring gene expression responses in polarized primary CF airway cells exposed to ETI alone or ETI in the presence of a pathogen challenge (PA14 or outer membrane vesicles). Responses of CFTR wild type primary CF airway cells to PA14 or outer membrane vesicles was also measured for comparison
Project description:Cystic fibrosis (CF) is an inherited, multi-system disease caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a ubiquitous ion channel important for epithelial hydration. A direct consequence of this dysfunction is impaired mucociliary clearance, chronic airway infection and a persistent neutrophilic inflammatory response that results in progressive loss of lung function, development of respiratory failure and premature death. Partial restoration of CFTR function is now possible for most CF patients through mutation specific CFTR modulators. Ivacaftor monotherapy produces significant clinical improvement in CF patients with the G511D mutation. Dual therapy, combining ivacaftor with lumacaftor or tezacaftor, results in modest clinical improvements in patients homozygous for F508del. More recently, triple therapy with elexacaftor/tezacaftor/ivacaftor (ETI) has led to dramatic improvements in lung function and quality of life in patients homozygous and heterozygous for F508del. Sputum proteomics is a powerful research technique capable of identifying important airway disease mechanisms by interrogating the proteome, an entire set of proteins within biological samples. It has confirmed the central role of neutrophilic immune dysregulation in CF and non-CF bronchiectasis, particularly involving the release of antimicrobial proteins and neutrophil-extracellular traps (NETs), and through impaired anti-inflammatory mechanisms. These processes produce distinct molecular signatures within the sputum proteome that become increasingly abnormal with chronic airway infection and progressive lung disease severity. In CF patients, airway and systemic inflammatory cytokines potentially related to these signatures reduce with the various forms of CFTR modulation. To date, no studies of ETI therapy in CF lung disease have assessed large-scale change in protein expression using untargeted proteomics. We hypothesised that ETI therapy would shift the sputum proteome toward health, potentially normalising airway biology in people with CF. The objectives of this study were to investigate changes in the CF sputum proteome with the introduction of ETI, correlate these with changes in clinical markers of disease severity, and make comparisons with the sputum proteome in healthy controls and in repeat samples from CF patients not suitable for ETI therapy. We also explored which molecular pathways associated with CF lung disease did not change with ETI.
2023-11-14 | PXD041950 | Pride
Project description:The metagenome of children with cystic fibrosis.
| PRJNA931830 | ENA
Project description:Children with cystic fibrosis stool samples 16s rRNA
Project description:The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, whereas tumors that are driven by SMARCB1-deficiency and tumors that represent previously misclassified adenoid cystic carcinomas are highly aggressive. Our findings have the potential to dramatically improve the diagnostic classification of sinonasal tumors and will fundamentally change the current perception of SNUCs.