Project description:The meristem-associated endosymbiont M. extorquens DSM13060 significantly increases needle and root growth of Scots pine (Pinus sylvestris L.) seedlings without producing plant hormones, but by aggregating around host nuclei. Here we studied gene expression of the pine host induced by M. extorquens DSM13060 infection. We selected the time point of 90 days post-inoculation for our analysis based, because at this point, Methylorubrum extorquens DSM13060 has systemically colonized the pine seedlings, being found throughout tissues of roots and shoots.
Project description:Methylorubrum extorquens AM1 is engineered to produce itaconic acid by heterologous expression of cis-aconitic acid decarboxylase. Mutation was also performed on phaR in Methylorubrum extorquens AM1, which regulate poly-beta-hydroxybutyrate accumulation, in attempt to increase carbon flux toward itaconic acid production. However, in our case, itaconic acid production by phaR mutant strain was not higher than that of the wildtype. Transcriptomic analysis was utilized in order to examine the cause for this phenomenon. RNA-seq analysis revealed that phaR mutation in the itaconic acid-producing strain might result in a complex regulatory rewiring at the gene expression level, which could cause a reduced resource flux toward ITA production. Also, RNA profiling gave a hint at the broad regulatory role of PhaR.