Project description:As the phyllosphere is a resource-limited niche, microbes have evolved different survival strategies by collaborating or competing with other organisms. This leads to the establishment of network structures which are stabilised by so-called microbial hub organisms. An already identified hub in the Arabidopsis thaliana phyllosphere is the oomycete pathogen Albugo laibachii. From wild Arabidopsis plants with white rust symptoms we isolated the basidiomycete yeast Moesziomyces albugensis, which is closely related to plant pathogenic smut fungi. It suppresses the infection of A. laibachii in lab experiments and inhibits growth of several bacterial phyllosphere members. The transcriptomic response of M. albugensis to presence of A. laibachii and bacterial SynCom members was investigated by using RNA sequencing. Interestingly, several genes encoding secretory proteins, mostly glycoside hydrolases and peptidases, are particularly induced upon interaction with A. laibachii.
2021-01-15 | GSE148670 | GEO
Project description:Maize phyllosphere bacterial microbial community
Project description:Mango bacterial leaf spot, which is caused by Xanthomonas critis pv. mangiferaeindicae (Xcm), poses a great threat to the development of mango planting industry.This work is the first to study the changes in gene and protein expressions in mango during Xcm infection. Our findings will provide new ideas for MBLS resistance and valuable genetic resources for the breeding of MBLS-resistant mango.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces.
Project description:<p>Plant-microbe interactions in the phyllosphere have been demonstrated to facilitate plant growth and enhance resistance to diverse stresses; nevertheless, their role in the bioaccumulation of contaminants by plants is rarely considered. Here, by comparing differences in the phyllosphere morphology, bacterial community assembly and metabolites between two choysum (Brassica parachinensis) varieties differing in di-n-butyl phthalate (DBP) accumulation, we revealed the pivotal roles of key phyllosphere exudate (fumarate) and recruited specific microbes in determining the variety-specific DBP accumulation in choysum. The low-DBP accumulation variety (LAV) enhanced the recruitment of phyllosphere microbes capable of degrading DBP by increasing fumarate secretion, relative to the high-DBP accumulation variety (HAV), thereby facilitating the colonization of DBP-degrading bacteria via the induction of biofilm formation and ultimately resulting in lower DBP accumulation in leaves. These findings offer novel insights into the LAV formation from the phyllosphere microbial perspective and highlight the role of phyllosphere microbes in mediating pollutant accumulation within crops, which is instrumental in minimizing pollutant accumulation through regulating the phyllosphere microbial community.</p>