Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.
Project description:Due to its antimicrobial activity, silver nanoparticles (Ag-NPs) are among the most used NPs worldwide, yet little information is available regarding their effects, particularly in soil dwelling organisms. Enchytraeids (Oligochaeta) are important members of the soil fauna which actively contribute to the acceleration of organic matter decomposition and nutrient recycling processes. Hence, for hazard and risk assessment it is important to provide toxicity data for these organisms and to understand more in regard to the mode of action of Ag-NPs within organism. To study this we conducted toxicity experiments using the OECD standard guideline, testing Ag-NPs and AgNO3, having assessed survival, reproduction and differential gene expression. Population toxicity responses were assessed showing higher toxicity for the AgNO3. In an attempt to understand the mode of action we performed transcription profiling using the microarray.
Project description:Due to its antimicrobial activity, silver nanoparticles (Ag-NPs) are among the most used NPs worldwide, yet little information is available regarding their effects, particularly in soil dwelling organisms. Enchytraeids (Oligochaeta) are important members of the soil fauna which actively contribute to the acceleration of organic matter decomposition and nutrient recycling processes. Hence, for hazard and risk assessment it is important to provide toxicity data for these organisms and to understand more in regard to the mode of action of Ag-NPs within organism. To study this we conducted toxicity experiments using the OECD standard guideline, testing Ag-NPs and AgNO3, having assessed survival, reproduction and differential gene expression. Population toxicity responses were assessed showing higher toxicity for the AgNO3. In an attempt to understand the mode of action we performed transcription profiling using the microarray. Gene expression profile of Enchytraeus albidus was analysed after 2 days of exposure to 100 and 200 mg/kg of two silver forms (nanoparticles and salt_silver nitrate) in OECD soil. Three biological replicates per test treatment and control (clean OECD soil) were used.