Project description:The aim of this study is to discover genes regulated by miR-204. Differential gene expression in HEK-293 cells transfected with miR-204-mimic compared to HEK-293 cells transfected with control oligo (HEK-293 control) was analyzed using the Agilent Human Whole Genome 4x44K gene expression array (Agilent Technologies, Santa Clara, CA).
Project description:Schizophrenia-associated miRNA were bidirectionally modulated in HEK-293, HeLa, and SH-SY5Y cell models. Results provide important insights into the current understanding of miRNA function in various cellular environments. Total RNA was obtained from HEK-293, HeLa, and SH-SY5Y cells at 24hrs post-transfection with either synthetic miRNA (miR overexpression) or anti-miR inhibitor (miR inhibition) oligonucleotides.
Project description:Human embryonal kidney cells (HEK-293) are the most common host cells used for transient recombinant adeno-associated virus (rAAV) production in pharmaceutical industry. To better cover the expected gene therapy product demands in the future, different traditional strategies such as cell line sub-cloning and/or addition of chemical substances to the fermentation media have been used to maximize titers and improve product quality. A more effective and advanced approach to boost yield can be envisaged by characterizing the transcriptome of different HEK-293 cell line pedigrees with distinct rAAV productivity patterns to subsequently identify potential gene targets for cell engineering. In this work, the mRNA expression profile of three HEK-293 cell lines, resulting in various yields during a fermentation batch process for rAAV production, was investigated to gain basic insight into cell variability and eventually to identify genes that correlate with productivity. Mock runs using only transfection reagents were performed in parallel as a control. We found significant differences in gene regulatory behaviors between the three cell lines at different growth and production stages. The evaluation of these transcriptomics profiles combined with collected in-process control parameters and titers shed some light on potential cell engineering targets to maximize transient production of rAAV in HEK-293 cells Comparison of three HEK-293 suspension cell lines transcriptomics during an AAV production process
Project description:We report here that human mitochondria contain small RNA including microRNA, piRNA, tRNA, rRNA, and RNA repeats. Mitochondria from human cells were purified and RNA isolated. Small RNAs were purified, library generated and analyzed by Illumina Hiseq 2000 system. The sequencing generated 19.5 and 17.7 million reads from HEK-293 and HeLa respectively. 91% and 97% sequences of HEK293 and HeLa respectively were annotated to various classes of small RNA. The total percentage of 4.21 and 2.58 sequences from HEK293 and HeLa respectively was found to be of miRNA. Further, we found only 1.2 % sequences from both the libraries aligned to mitochondrial genome. These results suggest that there is efficient transport of nuclear encoded small RNA to mitochondria. The small RNA in mitochondria may regulate critical cellular processes. Analyzing the smallRNA in human mitochondria from two human cell lines (HEK-293 and HeLa).
Project description:Schizophrenia-associated miRNA were bidirectionally modulated in HEK-293, HeLa, and SH-SY5Y cell models. Results provide important insights into the current understanding of miRNA function in various cellular environments.
Project description:The aim of this study is to discover genes regulated by miR-204. Differential gene expression in HEK-293 cells transfected with miR-204-mimic compared to HEK-293 cells transfected with control oligo (HEK-293 control) was analyzed using the Agilent Human Whole Genome 4x44K gene expression array (Agilent Technologies, Santa Clara, CA). HEK-293 cells were transfected with either miR-204 or a control, and gene expression was analyzed using the Agilent Human Whole Genome 4x44K array. A dye-swap was performed.
Project description:Twelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a human THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often due to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.
Project description:Twelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a human THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often due to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.