Project description:Purpose: Streptomyces albulus is an industrial producer of ε-poly-L-lysine, an antimicrobial cationic homo poly-amino acid used practically as a natural food preservative. Here, we present RNA sequencing data set unveiling differentially expressed transcripts during ε-poly-L-lysine production in the most extensively studied poly-L-Lys producer, S. albulus NBRC14147. Methods: During the poly-L-Lys fermentation, cells grown for 8 hours and 35 hours were harvested as growth phase cells and production phase cells, respectively, and total RNA were extracted individually. A 100-bp paired-end mRNA sequencing was performed for each sample on the Illumina HiSeq 2500 system. Result: Using an optimized data analysis workflow, we were able to map more than 44 million sequence reads per sample to the reference genome (GenBank accession number ASM385166v1). Differential gene expression analysis was performed using the edgeR. The RNA-seq data revealed that a total of 2449 genes were considered to be differentially expressed during poly-L-Lys production using a fold change cutoff of log2 less than -1 and greater than 1 (equivalent to a ±2-fold change). Conclusion: Our data will serve as a primary source for investigating the regulatory mechanism which govern poly-L-Lys production in S. albulus NBRC14147.
Project description:Total RNA was extracted from Streptomyces formicae grown on SFM (soy flour, mannitol agar) on day 2, 3 and 4 and subjected to cappable RNA sequencing by Vertis Biotechnologie for annotation of TSSs across the genome.
Project description:Bacillus methanolicus is a Gram-positive, thermophilic, methanol-utilizing bacterium. As a facultative methylotroph, B. methanolicus is also known to utilize d-mannitol, d-glucose and, as recently discovered, sugar alcohol d-arabitol. While metabolic pathways for utilization of methanol, mannitol and glucose are known, catabolism of arabitol has not yet been characterized in B. methanolicus. In this work we present the elucidation of this hitherto uncharted pathway. In order to confirm our predictions regarding genes coding for arabitol utilization, we performed differential gene expression analysis of B. methanolicus MGA3 cells grown on arabitol as compared to mannitol via transcriptome sequencing (RNA-seq). We identified a gene cluster comprising eight genes that was up-regulated during growth with arabitol as a sole carbon source. The RNA-seq results were subsequently confirmed via qRT-PCR experiments. The transcriptional organization of the gene cluster identified via RNA-seq was analyzed and it was shown that the arabitol utilization genes are co-transcribed in an operon that spans from BMMGA3_RS07325 to BMMGA3_RS07365.
2019-07-06 | GSE133849 | GEO
Project description:RNA-seq of Streptomyces albulus strains with different pls expressing levels
| PRJNA859668 | ENA
Project description:Adaptive evolution of Streptomyces albulus