Project description:Our goal is to convert methane efficiently into liquid fuels that may be more readily transported. Since aerobic oxidation of methane is less efficient, we focused on anaerobic processes to capture methane, which are accomplished by anaerobic methanotrophic archaea (ANME) in consortia. However, no pure culture capable of oxidizing and growing on methane anaerobically has been isolated. In this study, Methanosarcina acetivorans, an archaeal methanogen, was metabolically engineered to take up methane, rather than to generate it. To capture methane, we cloned the DNA coding for the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable archaeal organism from a Black Sea mat into M. acetivorans to effectively run methanogenesis in reverse. The engineered strain produces primarily acetate, and our results demonstrate that pure cultures can grow anaerobically on methane.
2015-12-20 | GSE66445 | GEO
Project description:pmoA gene sequencing of rice paddy soil from a greenhouse pot experiment on CH4 emissions with methanotrophic consortia inoculation
| PRJNA1234833 | ENA
Project description:16S rRNA gene sequencing of rice paddy soil from a greenhouse pot experiment on CH4 emissions with methanotrophic consortia inoculation
Project description:Possitive effects of plant growth promoting bacteria (PGPB) inoculation on plant growth and development are dependent on interaction between bacterial strains and plant roots, which are usually the bacterial niche. Furthermore, phytohormones are key regulators of plant physiology. Ethylene is essential in plant growth and development and in response to drought. Plant sensibility to ethylene is involved in plant response to PGPB strain inoculation and plant growth promotion. We used microarrays to detail the global programme of gene expression underlying plant interaction with two different PGPB strains (isolated from arid soils in southern Spain) regarding to plant sentitivity to ethylene by tomato ethylene receptor 3 (SlETR3).
Project description:Transcriptional profiling of methanotrophic bacteria (pmoA gene) in methane oxidation biocover soil by depth Three-different depth condition in methane oxidation biocover soil: top, middle and botton layer soil: genomic DNA extract. Three replicate per array.