Project description:In contrast to the desiccation tolerant (DT) ‘orthodox’ seeds, the so-called ‘intermediate’ seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds but show a considerable variability for the seed DT level, which may help to decipher the molecular basis of seed DT in plants. We thus led a comparative transcriptome analysis of developing seeds in three coffee species with contrasting seed DT levels. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were upregulated during DT acquisition in the two species with high seed DT, C. arabica and C. eugenioides. By contrast, an upregulation of numerous players of the metabolism, transport and perception of auxin was observed in C. canephora seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT levels are better prepared to cease respiration and avoid oxidative stresses.
Project description:Two Euphorbiaceae oil trees, Vernicia and Jatropha, were chosen to make a comparative transcriptomic study, with a focus on the differential oil accumulation process. Transcriptome sequencing was conducted with seeds at the initial- and fast- stage of oil accumulation from both.
Project description:au13-12_polysome - transcriptome and translatome of arabidopsis wt seeds according to dormancy - Identification of transcripts that are differentially abundant (transcriptome) and transcripts that are addressed to translation (translatome) in imbibed Arabidopsis seeds in relation with dormancy. During imbibition of seeds (16h and 24h in darkness at 25°C, dormant and non-dormant seeds), transcriptome analysis is done on total RNA and translatome analysis on polysomal RNA. - At harvest seeds are dormant. They stay dormant if they are stored at -20°C (D) and become non-dormant (ND) if they are stored 3 weeks at +20°C. Arabidopsis dormant seeds do not germinate at 25°C in darkness while non-dormant seeds do. Total RNA and polysomal RNA (polysomal fractions purified on sucrose gradients) were extracted from imbibed seeds for 16h or 24h at 25°C in darkness (3 biological replicates). Transcriptome and translatome are compared for Dormant vs Non-Dormant for 16h and 24 imbibition. In silico comparison will allow to compare transcriptome and translatome for each point and type of seeds and to compare the time points (16 vs 24h) for each type of sample.
Project description:iTRAQ-based comparative proteomic analysis on the critical node of viability loss in wheat seeds with obvious divergence in storability.
Project description:au13-12_polysome - transcriptome and translatome of arabidopsis wt seeds according to dormancy - Identification of transcripts that are differentially abundant (transcriptome) and transcripts that are addressed to translation (translatome) in imbibed Arabidopsis seeds in relation with dormancy. During imbibition of seeds (16h and 24h in darkness at 25°C, dormant and non-dormant seeds), transcriptome analysis is done on total RNA and translatome analysis on polysomal RNA. - At harvest seeds are dormant. They stay dormant if they are stored at -20°C (D) and become non-dormant (ND) if they are stored 3 weeks at +20°C. Arabidopsis dormant seeds do not germinate at 25°C in darkness while non-dormant seeds do. Total RNA and polysomal RNA (polysomal fractions purified on sucrose gradients) were extracted from imbibed seeds for 16h or 24h at 25°C in darkness (3 biological replicates). Transcriptome and translatome are compared for Dormant vs Non-Dormant for 16h and 24 imbibition. In silico comparison will allow to compare transcriptome and translatome for each point and type of seeds and to compare the time points (16 vs 24h) for each type of sample. 12 dye-swap - time course
Project description:MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development. In soybean (Glycine max), an important edible oil crop, valuable lipids are synthesized and stored in the cotyledons during embryogenesis .This storage lipids are used as energy source of the emerging seeds, during the germination procces. Until now, there are no microRNAs related to lipid metabolism in soybean or any other plant. This work aims to describe the miRNAome of germinating seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus germinating seeds. A total of 183 familes were detected through a computational analysis of a large number of reads obtained from deep sequencing from two small RNA libraries of (i) pooled germintaing seeds stages and (ii) mature soybean seeds. We have found 39 new mirna precursors which produce 41 new mature forms. The present work also have identified isomiRNAs and mirnas offset (moRNAs). This work presents a comprehensive study of the miRNA transcriptome of soybean germinating seeds and will provide a basis for future research on more targeted studies of individual miRNAs and their functions in lipid consumption in development soybean seeds.
2015-05-25 | GSE38373 | GEO
Project description:Transcriptome analysis of postharvest lotus seeds
Project description:RNAi mediated suppression of MADS29 severely affects seed set; the surviving seeds are smaller in size with reduced grain filling, abnormal starch grains and aberrant embryo development. To identify the affected pathways due to suppression of this transcription factor in the transgenic seeds, transcriptome analysis using microarray was carried out.