Project description:This experiment aimed to understand stress responses of microbial communities differing in chronic exposure to the photosynthesis inhibitor diuron, combining untargeted metatranscriptomics (RNA-seq) and dose-response design. First, river microbial communities were incubated for 5-weeks in microcosms 1/ under constant exposure to 4µg/L of diuron (stressed community) or 2/ without contamination (non-stressed community). Then, both communities were exposed for 1 hour to a gradient of diuron concentrations to investigate differences in stress responses after chronic exposure. This experimental design enabled the determination of contig response trends as well as sensitivity thresholds.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:Pristine groundwater is a highly stable environment with microbes adapted to dark, oligotrophic conditions. Input events like heavy rainfalls can introduce excess particulate organic matter including surface-derived microbes into the groundwater, hereby creating a disturbance to the groundwater microbiome. Some of the translocated bacteria are not able to thrive in groundwater and will form necromass. Here, we investigated the effects of necromass addition to the microbial community in fractured bedrock groundwater, using groundwater mesocosms as model systems. We followed the uptake of 13C-labeled necromass by the bacterial and eukaryotic groundwater community quantitatively and over time by employing a combined protein and DNA stable isotope probing approach. Necromass was rapidly depleted in the mesocosms within four days, accompanied by a strong decrease of Shannon diversity and an increase of bacterial 16S rRNA gene copy numbers by one order of magnitude. Species of Flavobacterium, Massilia, Rheinheimera, Rhodoferax and Undibacterium dominated the microbial community within two days and were identified as key players in necromass degradation, based on a 13C incorporation of > 90% in their peptides. Their proteomes showed various uptake and transport related proteins, and many proteins involved in metabolizing amino acids. After four and eight days of incubation, autotrophic and mixotrophic groundwater species of Nitrosomonas, Limnohabitans, Paucibacter and Acidovorax increased in abundance, with a 13C incorporation between 0.5 and 23%. Our data point towards a very fast and exclusive uptake of labeled necromass by a few specialists followed by a concerted action of groundwater microorganisms, including autotrophs presumably fueled by released, reduced nitrogen and sulfur compounds generated during necromass degradation.
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification
Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.
Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.
Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.
Project description:A functional microarray targeting 24 genes involved in chlorinated solvent biodegradation pathways has been developed and used to monitor the gene expression in a contaminated site (site B) under ERD (enhanced reductive dechlorination) treatment. The microarray format provided by NimbleGen and used in this study is 12x135K. 4 M-BM-5g of labelled antisense mRNA from 3 groundwater samples were hybridized on the microarray. A 3-chip study was performed, each corresponding to hybridization with 4 M-BM-5g of labelled antisense mRNA retrieved from a monitoring well of a contaminated site (site B). Each probe (760nt) on the microarray was synthesized in eight replicates, and a total of 5,707 random probes was used to determine the background noise. Groundwater samples were collected from a contaminated site (site B) from three monitoring wells (P1, P2 and P3). P1: well located upstream to the contamination source. P2: well in the contamination source. P3 : well located downstream to the contamination source.