Project description:The tomato SlWRKY3 transcription factor was overexpressed in cultivated tomato (Solanum lycopersicum)and transgenic plants transcriptome was compared to that of wild-type plants.
Project description:Prior exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with stronger defence responses. b-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance protecting various plants towards diverse stresses. In this study, by integrating BABA-induced changes in selected metabolites with transcriptome and proteome data, we generated a global map of the molecular processes operating in BABA-induced resistance (BABA-IR) in tomato. BABA significantly restricts the growth of the pathogens Oidium neolycopersici and Phytophthora parasitica but not Botrytis cinerea. A cluster analysis of the upregulated processes showed that BABA acts mainly as a stress factor in tomato. The main factor distinguishing BABA-IR from other stress conditions was the extensive induction of signalling and perception machinery playing a key role in defence priming. Interestingly, the signalling processes and immune response activated during BABA-IR in tomato differed from those in Arabidopsis with substantial enrichment of genes associated with jasmonic acid and ethylene signalling and no change in Asp levels. Our results revealed key differences between the effect of BABA on tomato and other model plants studied until now. Surprisingly, salicylic acid is not involved in BABA downstream signalization whereas ethylene and jasmonic acid play a crucial role.
Project description:The tomato SlWRKY3 transcription factor was overexpressed in cultivated tomato (Solanum lycopersicum)and transgenic plants transcriptome was compared to that of wild-type plants. At least 4 plants were collected for RNA extraction. The aim of the experiment was to compare transcriptomes of 35::SlWRKY3 plants and wild-type plants grown together and on MS (Murashige and Skoog) medium in vitro for 4 weeks. A technical replicate (dye swap) was conducted.
Project description:Purpose: To understand the molecular mechanisms involved in disease development during plant-nematode interactions. Methods: We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time points from susceptible plants (PR: Pusa Ruby) and two infection time points from resistant plants (M36: Transgenic MM line), grown under soil conditions. Results: Differentially expressed genes during susceptible (1827 tomato, 462 RKN) and resistance (25 tomato, 160 RKN) interactions were identified and a set of genes were validated by qRT-PCR. Conclusion: Our findings, for the first time, provide insights into the transcriptome dynamics of both tomato and RKN during susceptible and resistance interactions and reveal involvement of a complex network of biosynthetic pathways during disease development.
Project description:Southern tomato virus (STV) often infects healthy tomato plants (Solanum lycopersicum). In this study, we compared STV-free and STV-infected cultivar M82 plants to determine the effect of STV infection on the host plant. STV-free plants exhibited a short and bushy phenotype, whereas STV-infected plants exhibited increased height. STV-infected plants produced more fruit than STV-free plants, and the germination rate of seeds from STV-infected plants was higher than that of seeds from STV-free plants. This phenotypic difference was also observed in progeny plants (siblings) derived from a single STV-infected plant in which the transmission rate of STV to progeny plants via the seeds was approximately 86%. These results suggest that the interaction between STV and host plants is mutualistic. Transcriptome analyses revealed that STV infection affected gene expressions in host plants, notably evidenced by down-regulation of genes involved in ethylene biosynthesis and signaling. STV-infected tomato plants thus might be artificially selected due to their superior traits as a crop.
Project description:The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’ (or Lso). Lso disease symptom severity is dependent on Lso haplotype: tomato plants infected with Lso haplotype B experience more severe symptoms and higher mortality compared to plants infected with Lso haplotype A. By characterizing the molecular differences in the tomato plant’s responses to Lso haplotypes, the key components of LsoB virulence can be identified and, thus, targeted for disease mitigation strategies. To characterize the tomato plant genes putatively involved in the differential immune responses to Lso haplotypes A and B, RNA was extracted from tomato ‘Moneymaker’ leaves three weeks after psyllid infestation. Gene expression levels were compared between uninfected tomato plants (i.e., controls and plants infested with Lso-free psyllids) and infected plants (i.e., plants infested with psyllids infected with either Lso haplotype A or Lso haplotype B). Furthermore, expression levels were compared between plants infected with Lso haplotype A and plants infected with Lso haplotype B. A whole transcriptome analysis identified 578 differentially expressed genes (DEGs) between uninfected and infected plants as well as 451 DEGs between LsoA- and LsoB-infected plants. These DEGs were primarily associated with plant defense against abiotic and biotic stressors, growth/development, plant primary metabolism, transport and signaling, and transcription/translation. These gene expression changes suggested that tomato plants traded off plant growth and homeostasis for improved defense against pathogens, especially when infected with LsoB. Consistent with these results, tomato plant growth experiments determined that LsoB-infected plants were significantly stunted and had impaired negative geotropism. However, it appeared that the defense responses mounted by tomatoes were insufficient for overcoming the disease symptoms and mortality caused by LsoB infection, while these defenses could compensate for LsoA infection. The transcriptomic analysis and growth experiments demonstrated that Lso-infected tomato plants underwent gene expression changes related to abiotic and biotic stressors, impaired growth/development, impaired plant primary metabolism, impaired transport and signaling transduction, and impaired transcription/translation. Furthermore, the transcriptomic analysis also showed that LsoB-infected plants, relative to LsoA-infected, experienced more severe stunting, had improved responses to some stressors and impaired responses to others, had poorer transport and signaling transduction, and had impaired carbohydrate synthesis and photosynthesis.
Project description:The changes of small RNA profile have been studied in tomato and wild tomato plants to understand the host reponse to the infection of a non-coding viral RNA infection.