Project description:The purpose of this project was to elucidate gene expression in the peripheral whole blood of acute ischemic stroke patients to identify a panel of genes for the diagnosis of acute ischemic stroke. Peripheral blood samples were collected in Paxgene Blood RNA tubes from stroke patients who were >18 years of age with MRI diagnosed ischemic stroke and controls who were non-stroke neurologically healthy. The results suggest a panel of genes can be used to diagnose ischemic stroke, and provide information about the biological pathways involved in the response to acute ischemic stroke in humans. Total RNA extracted from whole blood in n=39 ischemic stroke patients compared to n=24 healthy control subjects.
Project description:blood miRNA expression in ischemic stroke compared to controls miRNA expression in blood cells from patients with ischemic stroke were compared to controls with vascular risk factors
Project description:Obesity is well recognized as a risk factor for coronary heart disease and mortality. The relationship between abdominal obesity and ischemic stroke remains less clear. Previous publication showed the obesity is an independent, potent risk factor for ischemic stroke in all race-ethnic groups. It is a stronger risk factor than BMI and has a greater effect among younger persons. The goal of this experiment was to compare genome wide enrichment of H3K9ac histone mark profile of white blood cells of healthy controls, patients with obesity and/or stroke in order to understand the histone modifications differences behind the different phenotypes. There were 3 subjects in each group.
Project description:The purpose of this project was to elucidate gene expression in the peripheral whole blood of acute ischemic stroke patients to identify a panel of genes for the diagnosis of acute ischemic stroke. Peripheral blood samples were collected in Paxgene Blood RNA tubes from stroke patients who were >18 years of age with MRI diagnosed ischemic stroke and controls who were non-stroke neurologically healthy. The results suggest a panel of genes can be used to diagnose ischemic stroke, and provide information about the biological pathways involved in the response to acute ischemic stroke in humans.
Project description:Elevated plasma homocysteine is an independent risk factor for cardiovascular disease and stroke, however the etiology remains poorly understood. Elevated homocysteine is known to inhibit methyltransferases including DNA methyltransferases, but no methylome-wide analysis of elevated homocysteine has been reported. Peripheral blood genomic DNA methylation in 8 Singaporean-Chinese ischemic stroke patients (4 male, 4 female) with varying homocysteine titer and hypertensive status were profiled using methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) on Illumina Genome Analyzer IIx. A methylome wide screen was undertaken for gender, total plasma homocysteine, hypertension and age. The data show considerable variability within the small cohort, including at genes which are related to one carbon metabolism and cardiovascular disease. Peripheral blood genomic DNA methylation in 8 Singaporean-Chinese ischemic stroke patients (4 male, 4 female) was profiled using methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) on Illumina Genome Analyzer IIx. Methylation parrterns were correlated with homocysteine levels, lypertensive status, gender and age.
Project description:Blood monocytes/macrophages infiltrate the brain after ischemic stroke and critically influence brain injury and regeneration. We investigated stroke-induced transcriptomic changes of monocytes/macrophages by RNA sequencing profiling, using a mouse model of permanent focal cerebral ischemia. Compared to non-ischemic conditions, brain ischemia induced only moderate genomic changes in blood monocytes, but triggered robust genomic reprogramming in monocytes/macrophages invading the brain. Surprisingly, functional enrichment analysis of the transcriptome of brain macrophages revealed significant overrepresentation of biological processes linked to neurovascular remodeling, such as angiogenesis and axonal regeneration, as early as 5 days after stroke, suggesting a previously underappreciated role for macrophages in initiating post-stroke brain repair. Upstream Regulator analysis predicted peroxisome proliferator-activated receptor gamma (PPARγ) as a master regulator driving the transcriptional reprogramming in post-stroke brain macrophages. Importantly, myeloid cell-specific PPARγ knockout (mKO) mice demonstrated lower post-stroke angiogenesis and neurogenesis than wild-type mice, which correlated significantly with the exacerbation of post-stroke neurological deficits in mKO mice. Collectively, our findings reveal a novel repair-enhancing transcriptome in brain macrophages during post-stroke neurovascular remodeling. As a master switch controlling genomic reprogramming, PPARγ is a rational therapeutic target for promoting and maintaining beneficial macrophage functions, facilitating neurorestoration, and improving long-term functional recovery after ischemic stroke.
Project description:Stroke remains a major leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures of ischemic stroke within the hyper-acute phase of the disease is still of primary interest for a real translational research on stroke diagnosis, prognosis and treatment. High-throughput - omics technologies are enabling large-scale studies on stroke pathology at different molecular levels. Data integration resulting from these -omics approaches is becoming crucial to unravel the interactions among all different molecular elements and highly contribute to interpret all findings in a complex biological context. Here, we have used advanced data integration methods for multi-level joint analysis of transcriptomics and proteomics datasets depicted from the mouse brain 2h after cerebral ischemia. By modeling network-like correlation structures, we identified a set of differentially expressed genes and proteins by ischemia with a relevant association in stroke pathology. The ischemia-induced deregulation of 10 of these inter-correlated elements was successfully verified in a new cohort of ischemic mice, and changes in their expression pattern were also evaluated at a later time-point after cerebral ischemia. Of those, CLDN20, GADD45G, RGS2, BAG5 and CTNND2 were highlighted and evaluated as potential blood biomarkers of cerebral ischemia in blood samples from ischemic and sham-control mice and from ischemic strokes and other patients presenting stroke-mimicking conditions. Our findings indicated that CTNND2 and GADD45G levels in blood within the first hours after ischemic stroke might be potentially useful to discriminate ischemic strokes from mimics and to predict patients’ poor outcome after stroke, respectively. In summary, we have here used for the first time an integrative approach to elucidate by means of biostatistical tools key elements of the initial stages of the stroke pathophysiology, highlighting new outstanding proteins that might be further considered as blood biomarkers of ischemic stroke.