Project description:Cortical tubers in patients with tuberous sclerosis complex (TSC) are associated with cognitive disability and intractable epilepsy. While these developmental malformations are believed to result from the effects of TSC1 or TSC2 Gene mutations, the molecular mechanisms leading to tuber formation during brain development as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform as a genome-wide strategy to define the Gene expression profile of cortical tubers resected during epilepsy surgery compared to histologically normal perituberal tissue (adjacent to the cortical tuber) from the same patients or autopsy control tissue.
Project description:Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.
Project description:Treatment resistant epilepsy in tuberous sclerosis complex (TSC) and some focal cortical dysplasias (FCDs) are associated with dysfunctional mammalian target of rapamycin (mTOR) signaling. This can upregulate cell growth and proliferation, with increased downstream ribosomal S6 protein phosphorylation (phospho-S6). mTOR inhibitors are used in TSC, the archetypal mTORopathy, to reduce tumor growth or seizure frequency. Preclinical studies in FCD support a potential role in suppressing seizures. This pilot study sought to evaluate the safety of the mTOR inhibitor everolimus in treatment-resistant (failure of > 2 anti-seizure medications) TSC and FCD patients undergoing surgical resection and to assess changes in mTOR signaling and molecular pathways.
Project description:Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the central nervous system TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to the impaired circulation of cerebrospinal fluid resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. Here, we performed RNA-Seq and small RNA-Seq on SEGAs (n=19) and periventricular controls (n=8) to gain a better understanding of the underlying molecular basis of SEGAs, so that novel treatment targets could be identified.
Project description:We prepared QTL map of tuber starch content in potato diploid population. Then, we examined expression level of enzyme ADP-glucose pyrophosphorylase (AGPase) taking part in starch biosynthesis (marker AGPaseS-a). Based on starch content and AGPaseS-a expression, we constructed four bulks prepared from RNA isolated from tubers of F1 individuals H1 and H2 consisted of high TSC genotypes, bulks L1 and L2 were made of low TSC genotypes. Plants in bulks H1 and L1 strongly expressed AGPaseS-a, whereas those in bulks H2 and L2 exhibited low levels. Then we used RNA-seq technology for selection of genes displaying differential expression between RNA pools. For selected candidate genes we mapped expression QTL (e-QTL) and found eQTL of eAGPaseS-a and ePGRCRURSE5, were close to the corresponding loci of (AGPaseS-a) and the 12S globulin cruciferin gene (PGCRURSE5). We concluded that the cruciferin gene PGRCRURSE5 is a novel candidate involved in the regulation of starch content in potato tubers and suggests that cruciferin may be a novel PTST protein in potato tubers.
Project description:Tuberous Sclerosis Complex (TSC), an autosomal dominant condition, is engendered by heterozygous mutations in either TSC1 or TSC2 genes, manifesting in systemic growth of benign tumors. In addition to brain lesions, neurologic sequelae represent the greatest morbidity in TSC patients. Investigations utilizing TSC1/2-knockout animal or human stem cell models suggest that TSC deficiency-causing hyper-activation of mTOR signaling might precipitate anomalous neurodevelopmental processes. However, how the pathogenic variants of TSC1/2 genes identified in TSC patients affect the trajectory of human brain development and how they contribute to the neurological manifestations in TSC remain largely unexplored. Here, we employed 3-dimensional cortical organoids derived from induced pluripotent stem cells (iPSCs) from TSC patients harboring TSC2 mutations, alongside organoids from age- and sex-matched healthy individuals as controls. Through comprehensively longitudinal molecular and cellular analysis of TSC organoids, including transcriptomics and single cell transcriptomics, we found that TSC2 pathogenic variants led to dysregulated neurogenesis, synaptogenesis, and gliogenesis, particularly for reactive astrogliosis. The altered developmental trajectory of TSC organoids significantly resembles the molecular signatures of neuropsychiatric disorders, including autism spectrum disorders, epilepsy, and intellectual disability. Through cell-cell communication analysis at the single cell level, we identified that TSC2 pathogenic variants disrupted the cell-cell communications, in particular, neuron-astrocyte interactions within the NLGN-NRXN signaling network. Furthermore, cellular and electrophysiological assessments of TSC cortical organoids, along with proteomics and phosphoproteomics analyses of synaptosomes, revealed that pathogenic TSC2 variants precipitate perturbations in mitochondrial translational integrity, neurofilament formation, synaptic transmission, and neuronal network activity. Intriguingly, the increased neu
Project description:Tuberous Sclerosis Complex (TSC), an autosomal dominant condition, is engendered by heterozygous mutations in either TSC1 or TSC2 genes, manifesting in systemic growth of benign tumors. In addition to brain lesions, neurologic sequelae represent the greatest morbidity in TSC patients. Investigations utilizing TSC1/2-knockout animal or human stem cell models suggest that TSC deficiency-causing hyper-activation of mTOR signaling might precipitate anomalous neurodevelopmental processes. However, how the pathogenic variants of TSC1/2 genes identified in TSC patients affect the trajectory of human brain development and how they contribute to the neurological manifestations in TSC remain largely unexplored. Here, we employed 3-dimensional cortical organoids derived from induced pluripotent stem cells (iPSCs) from TSC patients harboring TSC2 mutations, alongside organoids from age- and sex-matched healthy individuals as controls. Through comprehensively longitudinal molecular and cellular analysis of TSC organoids, including transcriptomics and single cell transcriptomics, we found that TSC2 pathogenic variants led to dysregulated neurogenesis, synaptogenesis, and gliogenesis, particularly for reactive astrogliosis. The altered developmental trajectory of TSC organoids significantly resembles the molecular signatures of neuropsychiatric disorders, including autism spectrum disorders, epilepsy, and intellectual disability. Through cell-cell communication analysis at the single cell level, we identified that TSC2 pathogenic variants disrupted the cell-cell communications, in particular, neuron-astrocyte interactions within the NLGN-NRXN signaling network. Furthermore, cellular and electrophysiological assessments of TSC cortical organoids, along with proteomics and phosphoproteomics analyses of synaptosomes, revealed that pathogenic TSC2 variants precipitate perturbations in mitochondrial translational integrity, neurofilament formation, synaptic transmission, and neuronal network activity. Intriguingly, the increased neu
Project description:This dataset contains both standard RNA-Seq and small RNA-Seq of TSC related cortical tubers and age matched cortical controls. For the standard RNA-Seq paired-end sequencing was carried out. Each sample was split across multiple lanes. For the files available here the multiple lanes have been merged together, resulting in one forward and one reverse .fastq file for each sample. Small RNA-Seq was carried out on the same samples that underwent standard RNA-Seq. Again paired-end sequencing was carried out. The files here are raw and will need to be undergo quality control and trimming.
| EGAD00001003444 | EGA
Project description:in vitro hyperexcitable cortical neuronal model of TSC