Project description:1. Evaluate the diagnostic value of long noncoding RNA (CCAT1) expression by RT-PCR in peripheral blood in colorectal cancer patients versus normal healthy control personal.
2. Evaluate the clinical utility of detecting long noncoding RNA (CCAT1) expression in diagnosis of colorectal cancer patients & its relation to tumor staging.
3. Evaluate the clinical utility of detecting long noncoding RNA (CCAT1) expression in precancerous colorectal diseases.
4. Compare long noncoding RNA (CCAT1) expression with traditional marker; carcinoembryonic antigen (CEA) and Carbohydrate antigen 19-9 (CA19-9) in diagnosis of colorectal cancer.
Project description:To explore the overall long noncoding RNA (lncRNA) involved in growth and development of Arabidopsis thaliana across the lifespan, we deeply sequenced samples of whole plants from different developmental stages (4 rosette leaves>1mm, 14 rosette leaves>1mm, rosette growth complete, first flower buds visible, flourishing florescence, first silique shattered, senescence) using strand-specific RNA sequencing (ssRNA-seq) menthod. We obtained 28.8 Gb raw data and identified 156 novel lncRNAs (unreported in all public plant lncRNA databases) . We also categorized the novel lncRNAs as intergenic, intronic, antisense, overlapped with perhaps pseudogenes and mRNA based on their location on the Arabidopsis genome. Furthermore, lncRNAs targeted protein-coding genes were predicted and functional annotated. In addition, we constructed a network of interactions between ncRNAs (miRNAs, lncRNA) and mRNAs. Our results suggest that the identified novel lncRNAs are important in modulating development process of Arabidopsis, and provide a rich resource for further research on the function of these novel lncRNAs.
Project description:We grafted Transcriptional Gene Silencing (TGS)-inducing wild type Arabidopsis and a mutant that is compromised in 24 nucleotide (nt) small RNA (sRNA) production onto a wild type reporter line. We observed that 21-24 nt sRNAs were transmitted across a graft union yet only the 24 nt sRNAs directed RNA-dependent DNA methylation (RdDM) and TGS of a transgene promoter in meristematic cells.
Project description:A silencing signal in plants with an RNA specificity determinant moves through plasmodesmata and the phloem. To identify the mobile RNA we grafted Arabidopsis thaliana shoots to roots that would be a recipient for the silencing signal. Using high throughput sequencing as a sensitive detection method and mutants to block small RNA (sRNA) biogenesis in either source or recipient tissue, we detected endogenous and transgene specific sRNA that moved across the graft union. Surprisingly we found that the mobile endogenous sRNAs account for a substantial proportion of the sRNA in roots and we provide evidence that 24nt mobile sRNAs direct epigenetic modifications in the genome of the recipient cells. Mobile sRNA thus represents a mechanism for transmitting the specification of epigenetic modification and could affect genome defence and responses to external stimuli that have persistent effects in plants. Keywords: Small RNA Analysis, Epigenetics