Project description:Prokaryotes create adaptive immune memories by acquiring foreign DNA snippets, known as spacers, into the CRISPR array1. In type II CRISPR-Cas systems, the RNA-guided effector Cas9 also assists the acquisition machinery by selecting spacers from protospacer adjacent motif (PAM)-flanked DNA2,3. Here, we uncover the first biological role for Cas9 that is independent of its dual RNA partners. Following depletion of crRNA and/or tracrRNA, Neisseria apoCas9 stimulates spacer acquisition efficiency. Physiologically, Cas9 senses low levels of crRNA in cells with short CRISPR arrays – such as those undergoing array neogenesis or natural array contractions – and dynamically upregulates acquisition to quickly expand the small immune memory banks. As the CRISPR array expands, rising crRNA abundance in turn reduces apoCas9 availability, thereby dampening acquisition to mitigate autoimmunity risks associate with elevated acquisition. While apoCas9’s nuclease lobe alone suffices for stimulating acquisition, only full-length Cas9 responses to crRNA levels to boost acquisition in cells with low immunity depth. Finally, we show that this activity is evolutionarily conserved across multiple type II-C Cas9 orthologs. Altogether, we establish an auto-replenishing feedback mechanism in which apoCas9 safeguards CRISPR immunity depth by acting as both a crRNA sensor and a regulator of spacer acquisition.
Project description:A whole transcriptome study was performed on Sulfolobus islandicus REY15A actively undergoing CRISPR spacer acquisition from the crenarchaeal monocaudavirus STSV2 in rich (TYS) and basal (SCV) media over a 6 day period. Spacer acquisition preceded strong host growth retardation, and changes in viral transcript abundance and virus copy numbers showed significant differences between the two media. Results showed that rich medium favoured CRISPR-Cas immunity generation.
Project description:Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids that are encountered, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that casposase integration in vitro recapitulates several properties of CRISPR-Cas integrases. The X-ray structure of Methanosarcina mazei casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization and the separation of Cas1 dimers. This, in turn, led to preferred integration of single spacers over two transposon ends.
Project description:BackgroundCRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference.ResultsWe describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A co-occurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner.ConclusionsThe E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster--in our case the first acquired spacer--and spacers acquired thereafter, possibly through the use of specific DNA degradation products of the CRISPR interference machinery by the CRISPR adaptation machinery. This loop enables a rapid expansion of the spacer repertoire against an actively present DNA element that is already targeted, amplifying the CRISPR interference effect.
Project description:The ability to write a stable record of identified molecular events into a specific genomic locus would enable the examination of long cellular histories and have many applications, ranging from developmental biology to synthetic devices. We show that the type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system of Escherichia coli can mediate acquisition of defined pieces of synthetic DNA. We harnessed this feature to generate records of specific DNA sequences into a population of bacterial genomes. We then applied directed evolution so as to alter the recognition of a protospacer adjacent motif by the Cas1-Cas2 complex, which enabled recording in two modes simultaneously. We used this system to reveal aspects of spacer acquisition, fundamental to the CRISPR-Cas adaptation process. These results lay the foundations of a multimodal intracellular recording device.