Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment. This is the RNA-seq experiment, DNA methylation data (bisulfite-seq) is provided under accession number GSE82310.
Project description:The abundance of bacterial (AOB) and archaeal (AOA) ammonia oxidisers, assessed using quantitative PCR measurements of their respective a-subunit of the ammonia monooxygenase (amoA) genes, and ammonia oxidation rates were measured in four contrasting coastal sediments in the Western English Channel. Sediment was sampled bimonthly from July 2008 to May 2011, and measurements of ammonia oxidiser abundance and activity compared to a range of environmental variables including salinity, temperature, water column nutrients and sediment carbon and nitrogen content. Despite a higher abundance of AOA amoA genes within all sediments, and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Other than ammonia oxidation rate, sediment particle size was the only variable that correlated with the spatial and temporal patterns of AOB amoA gene abundance, implying a preference of the AOB for larger sediment particles. This is possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation to occur, higher concentrations of inhibitory sulphide with pore waters of muddier sediments or a combination of both oxygen and sulphide concentrations. Similar to many other temporal studies of nitrification within estuarine and coastal sediments, decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rate suggests an alternative role for amoA-carrying AOA within these sediments.