Project description:Genome-wide expression data can provide important insights into normal and pathological cellular processes. However, the ability to use gene expression data to quantitatively assess the activation state of a given signaling pathway or transcriptional network in a sensitive and specific manner remains an important unmet goal. We now describe a computational algorithm, energy-paired scoring (EPS), that satisfies these criteria by predicting pathway activity using gene-gene interactions within a pathway signature in a manner analogous to the estimation of energy generated by two charged particles, as described by Coulomb’s law. We demonstrate the ability of EPS to: quantitatively assess pathway activation levels in vivo and in vitro; accurately estimate the extent of pathway inhibition achieved by gene knockdown; sensitively detect crosstalk between endogenous signaling pathways in vivo; and accurately identify compounds capable of inhibiting selected signaling pathways. Our findings indicate that EPS can accurately predict pathway activity over a wide dynamic range based upon gene expression data sets derived from multiple profiling platforms, as well as different species, tissues and cell types in both in vitro and in vivo contexts Four timepoints (0h, 24h, 48h and 96h) with 3 replicates per timepoint of doxycycline induction for MTB (Control), MTB/TAN, MTB/TOM and MTB/TWNT1
Project description:During our efforts to isolate potantial binding partners of Esat6, we isolated few peptides rich in phenylalanine residues that strongly interacted with Esat6. All peptides were less than fifty amino acids in length, One of them, Hcl1, when expressed in mycobacteria showed significant retardation in growth and survival within macrophages. Microarray analysis showed that Hcl1 affects a host of genes and cellular pathways. RNA was isolated from exponentially growing mycobacteria containing either plasmid vector pVV16 encoding peptide or vector pVV16 alone. Comparisons were made between Experimental (Mtb/Hcl1) and control (Mtb/pVV16) samples by extracting raw intensity values from multiple arrays.
Project description:RNA was isolated from mammary glands from 55 day old control mice, mice overexpressing the miR-200b/200a/429 cluster in mammary epithelial cells (MTB-200ba429) mice overexpressing the IGF-IR transgene in mammary epithelial cells (MTB-IGFIR), and mice overexpressing both the miR-200b/200a/429 cluster and the IGF-IR transgene in mammary epithelial cells (MTB-IGFIRba429)
Project description:Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), capable of manipulating and circumventing the host's immune system to establish infection. Ubiquitination plays a crucial role in the host's response to pathogens; however, the global alterations in protein ubiquitination during Mtb infection remain poorly understood. To elucidate the regulatory roles of ubiquitination in the immune response to Mtb, we investigated the ubiquitome of human macrophages following Mtb infection.