Project description:We report the application of RNA sequencing technology for transcriptome profiling of Trichoderma asperellum challenged with Organophosphorus Pesticide Dichlorvos. Based on RNA-seq analysis, in T. asperellum TJ01 treated with 100 μg/mL, 500 μg/mL, and 1000 μg/mL dichlorvos, 204, 490, and 872 genes were significantly upregulated, respectively, while 37, 177, and 383 genes were significantly downregulated, respectively. This study provides a framework for the application of transcriptome profiling towards characterization of trichoderma under stress of Organophosphorus Pesticide.
Project description:Metagenomics in soil treated with organic fertilizer that Trichoderma asperellum TS7-1-enhanced composting of erythromycin fermintation residue
Project description:A self-designed Trichoderma high density oligonuclotide (HDO) microarray (Roche-NimbleGen, Inc., Madison, WI, USA) was constructed in a similar way than a previous Trichoderma HDO microarray (Samolski et al., 2009). The microarray was composed of 392,779 60-mer probes designed against 14,081 EST-derived transcripts (Trichochip-1) and the genomes of T. reesei (9,129 genes) and T. virens (11,643 genes). The Trichochip-1 ESTs were obtained from 28 cDNA libraries from eight different species (representing the biodiversity of this genus: T. harzianum, T. atroviride, T. asperellum, T. viride, T. longibrachiatum, T. virens, T. stromaticum and T. aggresivum), under a wide range of growth conditions, including biocontrol-related conditions and different nutritional situations (Vizcaíno et al., 2006). This HDO microarray was used to analyze Trichoderma spp. transcriptomes after 20 h incubation in the presence of tomato plants. The Trichochip1 EST database was generated in the TrichoEST project funded by the EU (QLK3-CT-2002-02032).
Project description:A self-designed Trichoderma high density oligonuclotide (HDO) microarray (Roche-NimbleGen, Inc., Madison, WI, USA) was constructed in a similar way than a previous Trichoderma HDO microarray (Samolski et al., 2009). The microarray was composed of 392,779 60-mer probes designed against 13,443 EST-derived transcripts (Trichochip-1) and the genomes of T. atroviride (11,100 genes) and T. virens (11,643 genes). The Trichochip-1 ESTs were obtained from 28 cDNA libraries from eight different species (representing the biodiversity of this genus: T. harzianum, T. atroviride, T. asperellum, T. viride, T. longibrachiatum, T. virens, T. stromaticum and T. aggresivum), under a wide range of growth conditions, including biocontrol-related conditions and different nutritional situations (Vizcaíno et al., 2006). The Trichochip1 EST database was generated in the TrichoEST project funded by the EU (QLK3-CT-2002-02032).
Project description:A self-designed Trichoderma high density oligonuclotide (HDO) microarray (Roche-NimbleGen, Inc., Madison, WI, USA) was constructed in a similar way than a previous Trichoderma HDO microarray (Samolski et al., 2009). The microarray was composed of 392,779 60-mer probes designed against 13,443 EST-derived transcripts (Trichochip-1) and the genomes of T. atroviride (11,100 genes) and T. virens (11,643 genes). The Trichochip-1 ESTs were obtained from 28 cDNA libraries from eight different species (representing the biodiversity of this genus: T. harzianum, T. atroviride, T. asperellum, T. viride, T. longibrachiatum, T. virens, T. stromaticum and T. aggresivum) under a wide range of growth conditions, including biocontrol-related conditions and different nutritional situations (Vizcaíno et al., 2006). The Trichochip1 EST database was generated in the TrichoEST project funded by the EU (QLK3-CT-2002-02032)
Project description:Recent research has highlighted that the polyphenols Quercetin (Q) and Tannic acid (TA) are capable of extending the lifespan of C. elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to Quercetin or Tannic acid concentrations that are non-effective (in lifespan extension), lifespan extending or toxic. The global transcriptome was compared in wild type nematodes raised in the presence of 0, 50, 100, and 200 µM Quercetin (Q) or 0, 100, 200, and 300 µM Tannic acid (TA).