Project description:In this pioneering study, we present the first comprehensive catalog of 683 small non-coding miRNAs for Astyanax mexicanus. Focusing on an early developmental stage, miRNAs were extracted and sequenced from 24hpf embryos of surface fish and three distinct cavefish morphs (Pachón, Tinaja, and Molino). We utilized in silico analyses to predict putative 3’UTR targets of these miRNAs, revealing a unique and extensive miRNA landscape in cavefish. Small RNA sequencing identified over 100 differentially expressed miRNAs in each cave morph compared to surface fish at 24hpf, suggesting early activation of miRNA-mediated silencing pathways. Notably, a subset of miRNAs was common across all three cave morphs, constituting cave-specific miRNAs potentially instrumental in cave adaptation. To unravel the functional implications of these cave-specific miRNAs, we analyzed their predicted target genes. Gene Ontology (GO) term analysis unveiled pathways which align with known adaptations in cavefish, primarily affecting development and metabolism. Further, cross-validating with a sample mRNAseq data from Pachón and surface fish also strongly suggested impact of these miRNAs on cave adaptation associated pathways. This study establishes a foundation for exploring miRNA-mediated gene regulation in cavefish, shedding light on their potential role in regulating early developmental and metabolic adaptations crucial for troglomorphic features. The comprehensive miRNA catalog provided will also guide future investigations into the intricate world of miRNA-mediated evolution in cave-adapted species.
Project description:Organisms adapt to and survive in environments with varying nutrient availability. Cis-regulatory changes play important roles in adaptation and phenotypic evolution. To what extent cis-regulatory elements contribute to metabolic adaptation is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, that survives in nutrient rich surface and nutrient deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide analysis of accessible chromatin and histone modifications in the liver tissue of one surface and two independently derived cave populations, providing the first genome-wide epigenetic landscape in this organism. We find that many cis-regulatory elements differ between surface and the cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. Changes in gene regulatory networks between the surface and cave morphotypes point to global changes in key metabolic pathways.
Project description:Organisms adapt to and survive in environments with varying nutrient availability. Cis-regulatory changes play important roles in adaptation and phenotypic evolution. To what extent cis-regulatory elements contribute to metabolic adaptation is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, that survives in nutrient rich surface and nutrient deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide analysis of accessible chromatin and histone modifications in the liver tissue of one surface and two independently derived cave populations, providing the first genome-wide epigenetic landscape in this organism. We find that many cis-regulatory elements differ between surface and the cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. Changes in gene regulatory networks between the surface and cave morphotypes point to global changes in key metabolic pathways.
Project description:we report a transcriptome-wide comparative investigation between surface and cave species in Sinocyclocheilus. De novo transcriptome assemblies were performed on surface and cave species; then the Sinocyclocheilus contigs were annotated with Gene Ontology. RNA-Seq assays revealed reduced transcription of a series of visual phototransduction and retinal disease related genes in cave-dwelling species compared with surface species. Degeneration of the retina in Sinocyclocheilus cavefish might occur in a lens-independent way by the down-regulation of several transcriptional factors, which have direct roles in retina development and maintenance, such as crx, rorb and Wnt pathway members. Examination of 2 different eye samples in 2 Sinocyclocheilus species.
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically.
Project description:To determine whether and how warming affects the functional capacities of the active microbial communities, GeoChip 5.0 microarray was used. Briefly, four fractions of each 13C-straw sample were selected and regarded as representative for the active bacterial community if 16S rRNA genes of the corresponding 12C-straw samples at the same density fraction were close to zero.
Project description:Background: While the luminal microbiome composition in the human cervicovaginal tract has been defined, the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that they may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a clinically well-characterized cohort of Kenyan women. Results: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners dominated luminal samples had a corresponding Gardnerella dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbiome was associated with epithelial remodeling and pro-inflammatory pathways. Communities dominated by L. iners and Gardnerella were associated with low host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, and with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. Conclusion: We identified ectocervical tissue-adherent bacterial communities in all study participants. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. This difference could possibly explain that L. iners dominant luminal communities have a high probability of transitioning to high diverse bacterial communities including high abundance of Gardnerella. By performing integrative multi-omics analyses we further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community is similar to vaginal biofilms that significantly impact women’s reproductive and sexual health.