Project description:The contribution of epigenetic alterations to natural variation for gene transcription levels remains unclear. In this study, we investigated the functional targets of the maize chromomethylase ZMET2 in multiple inbred lines to determine whether epigenetic changes conditioned by this chromomethylase are conserved or variable within the species. Gene expression microarrays were hybridized with RNA samples from the inbred lines B73 and Mo17, and from near-isogenic derivatives containing the loss-of-function allele zmet2-m1. A set of 126 genes that displayed statistically significant differential expression in zmet2 mutants relative to wild-type plants in at least one of the two genetic backgrounds were identified. Analysis of the transcript levels in both wild-type and mutant individuals revealed that only 10% of these genes were affected in zmet2 mutants in both B73 and Mo17 genetic backgrounds. Over 80% of the genes with expression patterns affected by zmet2 mutations display variation for gene expression between wild-type B73 and Mo17 plants. Further analysis was performed for seven genes that were transcriptionally silent in wild-type B73, but expressed in B73 zmet2-m1, wild-type Mo17 and Mo17 zmet2-m1 lines. Mapping experiments confirmed that the expression differences in wild-type B73 relative to Mo17 inbreds for these genes were caused by cis-acting regulatory variation. Methylation-sensitive PCR and bisulphite sequencing demonstrated that for five of these genes the CpNpG methylation in the wild-type B73 genetic background was substantially decreased in the B73 zmet2-m1 mutant and in wild-type Mo17. A survey of eight maize inbreds reveals that each of these five genes exhibit transcriptionally silent and methylated states in some inbred lines and unmethylated, expressed states in other inbreds, providing evidence for natural variation in epigenetic states for some maize genes. Keywords: mutant versus wild-type comparison in two inbred genotypes
Project description:The objective of the current study is to unravel the gene regulatory networks controlled by the nkd genes during maize endosperm developent. We compared wild type (B73) vs. nkd mutant (introgressed into B73 background) transcriptomes in aleurone vs. starchy endosperm cell types captured by laser capture microdissection technology.
Project description:The contamination of agricultural soil by heavy metal cadmium (Cd) poses a significant environmental challenge, affecting crop growth, development and, human health. Previous studies have established the pivotal role of the ZmHMA3 gene, a P-type ATPase heavy metal transporter, in determining variable Cd accumulation in maize grains among 513 inbred lines. To decipher the molecular mechanism underlying mutation-induced phenotypic differences mediated by ZmHMA3, we conducted a quantitative Tandem Mass Tag (TMT)-based proteomic analysis of immature maize kernels. This analysis aimed to identify differentially expressed proteins (DEPs) in wild-type B73 and zmhma3 null mutant under Cd stress. The findings demonstrated that zhma3 accumulated higher levels of Cd compared to B73 when exposed to varying Cd concentrations in the soil. In comparison to low Cd concentration soil, B73 and zmhma3 exhibited 75 and 142 DEPs, respectively, with 24 common DEPs shared between them. Zmhma3 showed a higher induction of upregulated genes related to Cd stres than B73. Amino sugar and nucleotide sugar metabolism were specifically enriched in B73, while phenylpropanoid biosynthesis, nitrogen metabolism, and glyoxylate and dicarboxylate metabolism appeared to play a more significant role in zmhma3. This study provides proteomics insights into unraveling the molecular mechanism underlying the differences in Cd accumulation in maize kernel.
Project description:The objective of the current study is to unravel the gene regulatory networks controlled by the nkd genes during maize endosperm development. We compared wild type (B73) vs. nkd mutant (introgressed into B73 background) transcriptomes in aleurone vs. starchy endosperm cell types captured by laser capture microdissection technology. We performed RNA seq analysis of mid-mature (15DAP) endosperm in two cell types [aleurone (A) and starchy endosperm (S)] of wild type B73 (B) and nkd mutant (N) kernels with three independent biological replicates.
Project description:The contribution of epigenetic alterations to natural variation for gene transcription levels remains unclear. In this study, we investigated the functional targets of the maize chromomethylase ZMET2 in multiple inbred lines to determine whether epigenetic changes conditioned by this chromomethylase are conserved or variable within the species. Gene expression microarrays were hybridized with RNA samples from the inbred lines B73 and Mo17, and from near-isogenic derivatives containing the loss-of-function allele zmet2-m1. A set of 126 genes that displayed statistically significant differential expression in zmet2 mutants relative to wild-type plants in at least one of the two genetic backgrounds were identified. Analysis of the transcript levels in both wild-type and mutant individuals revealed that only 10% of these genes were affected in zmet2 mutants in both B73 and Mo17 genetic backgrounds. Over 80% of the genes with expression patterns affected by zmet2 mutations display variation for gene expression between wild-type B73 and Mo17 plants. Further analysis was performed for seven genes that were transcriptionally silent in wild-type B73, but expressed in B73 zmet2-m1, wild-type Mo17 and Mo17 zmet2-m1 lines. Mapping experiments confirmed that the expression differences in wild-type B73 relative to Mo17 inbreds for these genes were caused by cis-acting regulatory variation. Methylation-sensitive PCR and bisulphite sequencing demonstrated that for five of these genes the CpNpG methylation in the wild-type B73 genetic background was substantially decreased in the B73 zmet2-m1 mutant and in wild-type Mo17. A survey of eight maize inbreds reveals that each of these five genes exhibit transcriptionally silent and methylated states in some inbred lines and unmethylated, expressed states in other inbreds, providing evidence for natural variation in epigenetic states for some maize genes. Experiment Overall Design: The zmet2-m1 mutant allele was backcrossed into two inbred backgrounds, B73 and Mo17. RNA was isolated from 6 biological replicates of B73 wild-type plants, 6 biological replicates of B73 zmet2-m1 mutant plants; 3 biological replicates of Mo17 wild-type plants and 3 biological replicates of Mo17 zmet2-m1 mutant plants.
Project description:To investigate the different drought response between the different maize lines, we screened drought-tolerant line W9706 and drought-susceptible line B73 to compare the transcriptome
Project description:These data include RNA-seq, circRNA-seq, and small RNA-seq of transcriptome, Ribo-seq of translatome and protein protein binary interactions by recombination-based library vs. library yeast-2-hybrid throughout the lifecycle of the maize inbred line B73.
Project description:These data include RNA-seq, circRNA-seq, and small RNA-seq of transcriptome, Ribo-seq of translatome and protein protein binary interactions by recombination-based library vs. library yeast-2-hybrid throughout the lifecycle of the maize inbred line B73.
Project description:Purpose: We aim to reveal maize transcriptomic changes in wild-type and Gβ knockout lines. Methods: RNA-seq was used to reveal transcriptome of maize biological replicates of wild-type and Gβ knockout lines. Results: Differnentically expressed transcritps were identified by the comparison of biological replicates of wild-type and Gβ knockout lines. Conclusions: We identified differentially expressed genes in Gβ knockout lines.
Project description:Analysis of whole genome bisulfite data for 3 maize inbred lines (B73, PH207, and W22) with data aligned to the corresponding genome for determination of methylation level (CG, CHG, and CHH) across 100bp windows of the maize genome.