Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared.
Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared. Radiata pine trees used for microarray experiment were selected from two progeny trials planted at Flynn and Kromelite, Australia. Based on the IML-based MOE measurement, five families with highest and lowest MOE each were selected from each trial, which represented two segregant populations with contrasting wood stiffness. Two individuals from each selected family were further sampled. Developing xylem tissues of selected trees in Flynn trial were sampled in spring (October) and autumn (April), representing earlywood (EW) and latewood (LW) of juvenile aged trees, respectively. Collection of xylem tissues from Kromelite trial was arranged in summer (late November) when latewood (LW) was formed. The xylem tissues were scraped at breast height with a sharp chisel after the bark was removed. In Flynn trial EW and LW tissues were collected from the same sampled trees on opposite sides of the trunk. Transcript accumulation was compared in trees with highest (HS) and lowest stiffness (LS) using xylem samples from Flynn collected in spring (EW) and autumn (LW), as well as Kromelite in summer (LW), respectively. Bulked segregant analysis (BSA) was used for the experiment design. Total RNA samples extracted from the five trees with HS were pooled at equal amount, and compared to the bulked five individuals with LS. This pooling strategy can partly minimize the genetic variation among different genotypes. Dye swaps were applied in each biological replicate.
Project description:Bulk segregant analysis using microarrays, and extreme array mapping have recently been used to rapidly identify genomic regions associated with phenotypes in multiple species. These experiments, however require the identification of single feature polymorphisms between the cross parents for each new combination of genotypes, which raises the cost of experiments. The availability of the genomic polymorphism data in Arabidopsis thaliana, coupled with the efficient designs of Single Nucleotide Polymorphism (SNP) genotyping arrays removes the requirement for SFP detection and lowers the per array cost, thereby lowering the overall cost per experiment. To demonstrate that these approaches would be functional on SNP arrays and determine confidence intervals, we analyzed hybridizations of natural accessions to the Arabidopsis ATSNPTILE array and simulated BSA or XAM given a variety of gene models, populations, and bulk selection parameters. Our results show a striking degree of correlation between the genotyping output of both methods, which suggests that the benefit of SFP genotyping in context of BSA can be had with the cheaper, more efficient SNP arrays. As a final proof of concept, we hybridized the DNA from bulks of an F2 mapping population of a Sulfur and Selenium ionomics mutant to both the Arabidopsis ATTILE1R and ATSNPTILE arrays, which produced almost identical results. We have produced R scripts that prompt the user for the required parameters and perform the BSA analysis using the ATSNPTILE1 array and have provided them as supplemental data files. Keywords: genomic hybridization of inbred lines and bulked segregant analysis
Project description:Despite the significance of nucleus genes in plant growth and development, little is known of the molecular bases of regulation of photosynthesis in woody plants.Hence discovering the genetic basis for photosynthesis related phenotypic variation and identifying the major genes controlling these complex traits in trees is essential. Combining the microarray technique and bulked segregant analysis strategy, we used poplar as a model to detect the nucleus genes differentially expressed in segregation population of photosynthesis traits. We measured the F1 interspecific population and segregated the stable extrem samples into two groups including three pools containing five incividuals.Use the Affymetrix poplar gene chip to decrypt the gene functions and mechanisms in different photosynthetic rate.