Project description:Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, -glucosidases, endoxylanases, -xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.
Project description:Permafrost soil in high latitude tundra is one of the largest terrestrial carbon (C) stocks and is highly sensitive to climate warming. Understanding microbial responses to warming induced environmental changes is critical to evaluating their influence on soil biogeochemical cycles. In this study, a functional gene array (i.e. GeoChip 4.2) was used to analyze the functional capacities of soil microbial communities collected from a naturally degrading permafrost region in Central Alaska. Varied thaw history was reported to be the main driver of soil and plant differences across a gradient of minimally, moderately and extensively thawed sites. Compared with the minimally thawed site, the number of detected functional gene probes across the 15-65 cm depth profile at the moderately and extensively thawed sites decreased by 25 % and 5 %, while the community functional gene beta-diversity increased by 34% and 45%, respectively, revealing decreased functional gene richness but increased community heterogeneity along the thaw progression. Particularly, the moderately thawed site contained microbial communities with the highest abundances of many genes involved in prokaryotic C degradation, ammonification, and nitrification processes, but lower abundances of fungal C decomposition and anaerobic-related genes. Significant correlations were observed between functional gene abundance and vascular plant primary productivity, suggesting that plant growth and species composition could be co-evolving traits together with microbial community composition. Altogether, this study reveals the complex responses of microbial functional potentials to thaw related soil and plant changes, and provides information on potential microbially mediated biogeochemical cycles in tundra ecosystems.
Project description:Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties, plant and microbial communities, in particular microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38-137% in response to either clipping or the combined treatment, which could weaken the long-term soil carbon stability and trigger a positive feedback to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization and denitrification by 32-39%. The potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium caused by clipping alone, and contribute to unchanged plant biomass. Moreover, clipping tended to interact antagonistically with warming, especially on nitrogen cycling genes, demonstrating that single factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties, as well as the abundance and structure of soil microbial functional genes. The aboveground biomass removal for biofuel production needs to be re-considered as the long-term soil carbon stability may be weakened.
2016-09-27 | GSE86527 | GEO
Project description:Plant litter fungal community structure.
| PRJNA1069672 | ENA
Project description:Fungal community of plant litter
Project description:Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies focused on how fire affects both the taxonomic and functional diversity of soil microbial communities, along with plant diversity and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects for a grassland ecosystem 9-months after an experimental fire at the Jasper Ridge Global Change Experiment (JRGCE) site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis indicating that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa were able to withstand the disturbance. In addition, fire decreased the relative abundances of most genes associated with C degradation and N cycling, implicating a slow-down of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated plant growth, likely enhancing plant-microbe competition for soil inorganic N. To synthesize our findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for the significantly higher soil respiration rates in burned sites. In conclusion, fire is well-documented to considerable alter the taxonomic and functional composition of soil microorganisms, along with the ecosystem functioning, thus arousing feedback of ecosystem responses to affect global climate.
Project description:The effects of two years' winter warming on the overall fungal functional gene structure in Alaskan tundra soil were studies by the GeoChip 4.2 Resuts showed that two years' winter warming changed the overall fungal functional gene structure in Alaskan tundra soil.
2019-03-07 | GSE127899 | GEO
Project description:Fungal diversity in litter decomposition
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.