Project description:Genomic DNA from five strains, Aspergillus fumigatus Af71, Aspergillus fumigatus Af294, Aspergillus clavatus, Neosartorya fenneliae, and Neosartorya fischeri, were co-hybridized with that of Aspergillus fumigatus Af293 and compared.
Project description:To investigate the influence of Aspergillus fumigatus on iron regulation in macrophages, we obtained macrophages in culture from human derived monocytes and co-cultured the monocyte-derived macrophages with Aspergillus conidia at a 1:1 ratio. We collected samples at 0, 2, 4, 6 and 8 hours and extracted RNA. We then performed gene expression profiling analysis using data obtained from RNA-seq of control macrophages and macrophage co-cultured with Aspergillus fumigatus at five time points.
Project description:Small RNA libraries of 4 different mycovirus-infected and -free isogenic lines of A. fumigatus were constructed using Scriptminer adapters. sRNAomes were analysed and putative virus-derived small RNAs were identified. Analysis of small RNA profiles of 4 different mycovirus-infected A. fumigatus isolates
Project description:Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by genomic approaches. Keywords: Aspergillus fumigatus treated with amphotericin B for 24 hours
Project description:The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4 sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveals new insights into SREBP’s complex role in infection site adaptation and fungal virulence.
Project description:Small RNA libraries of three different mycovirus-infected A. fumigatus isolates were constructed by using Illumina high definition adapters. sRNAomes were analysed and putative virus-derived small RNAs were identified. Analysis of small RNA profiles of three different mycovirus-infected A. fumigatus isolates
Project description:This SuperSeries is composed of the following subset Series: GSE21353: Gene expression profiles of human immature dendritic cells after 3h, 6h and 12h of co-cultivation with Aspergillus fumigatus GSE28806: The temporal dynamics of differential gene expression in human alveolar epithelial and endothelial cells interacting with the human pathogenic mould Aspergillus fumigatus in vitro Refer to individual Series
Project description:Aspergillus fumigatus is an important human pathogen and a leading fungal killer. This study aimed to determine the small RNA repertoire of A. fumigatus in conidia and mycelium grown for 24 or 48 hours in liquid culture.