Project description:TCP1 papillary thyroid carcinoma cells were plated at 100,000 cells/well in a 6-well plate and transfected with 10nM of a synthetic pre-miR-129-5p or a negative pre-miRNA using Lipofectamine RNAiMAX reagent. RNA samples were harvested at 24 and 48 hours post-transfection.
Project description:In an RNAseq analysis, we have identified the microRNA hsa-miR-129-5p with high levels in acute wounds (day1 to day7) compared to normal skin. The biological function of this miRNA in human epidermal keratinocytes during wound repair has not been studied. To study the genes regulated by miR-129-5p , we transfected miR-mimics targeting miR-129-5p into human primary epidermal keratinocytes to over-express miR-129-5p expression. We performed a global transcriptome analysis of keratinocytes upon miRNA overexpression using Affymetrix arrays.
Project description:miR-7-5p is a recently discovered downregulated miRNA in thyroid papillary carcinoma (PTC). The goal of this project was to characterize the role of miR-7-5p in thyroid tumorigenesis and to identify the targeted modulated pathways.
Project description:MiRNAs have been shown to alter both protein expression and secretion in different cellular contexts. By combining in vitro, in vivo and in silico techniques, we demonstrated that overexpression of pre-miR-1307 reduced the ability of breast cancer cells to induce endothelial cell sprouting and angiogenesis. However, the molecular mechanism behind this and the effect of the individual mature miRNAs derived from pre-miR-1307 on protein secretion and is largely unknown. Here, we overexpressed miR-1307-3p|0, -3p|1 and 5p|0 in MDA-MB-231 breast cancer cells and assessed the impact of miRNA overexpression on protein secretion by Mass Spectrometry. Unsupervised hierarchical clustering revealed a distinct phenotype induced by overexpression of miR-1307-5p|0 compared to the controls and to the 5’isomiRs derived from the 3p-arm. Together, our results suggest different impacts of miR-1307-3p and miR-1307-5p on protein secretion which is in line with our in vitro observation that miR-1307-5p, but not the isomiRs derived from the 3p-arm reduce endothelial cell sprouting in vitro. Hence these data support the hypothesis that miR-1307-5p is at least partly responsible for impaired vasculature in tumors overexpressing pre-miR-1307.
Project description:Amyotrophic lateral sclerosis (ALS) involves the degeneration of brain and spinal cord motor neurons. Mutations in Superoxide Dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43) and Fused-in-Sarcoma (FUS) account for 20-30 % of the familial ALS (fALS) cases. The RNA-binding proteins TDP-43 and FUS function in mRNA and miRNA biogenesis. MiRNAs are required for survival of neurons and deregulation of miRNA expression has been reported in several neurodegenerative disorders. Here, we report the dysregulation of DROSHA, DGCR8, and DICER in human neuroblastoma SH-SY5Y cells expressing the ALS-associated SOD1(G93A) mutant protein. MiRNA profiling in SH-SY5Y/SOD1(G93A) cells and transgenic SOD1(G93A) mice revealed upregulation of miR-129-5p at the early stage of disease. Moreover, miR-129-5p is also upregulated in lymphocytes of sporadic ALS patients. We demonstrate that miR-129-5p targets ELAVL4/HuD mRNA by binding to its 3’ UTR, which reduces HuD expression and impairs differentiation and neurite outgrowth. Conversely, treatment with an antagomir or complementation with HuD protein restores neuritogenesis. Collectively, our study identifies miR-129-5p and HuD as key regulators of neuronal differentiation and as potential therapeutic targets for ALS.
Project description:Transcriptional profiling of human papillary thyroid cancer cells comparing control untreated BCPAP cells with BCPAP cells transfected with miR-145b-5p mimic. Two-condition experiment, BCPAP cells vs. miR-146b-5p transfexted BCPAP cells. Biological replicates: 1 control sample, 1 transfected sample.
Project description:Frontotemporal dementia is a debilitating neurodegenerative disorder characterized by frontal and temporal lobe degeneration, resulting in behavioral changes, language difficulties, and cognitive decline. In this study, smallRNA sequencing was conducted on postmortem brain tissues obtained from FTD patients with GRN, MAPT, or C9ORF mutations, focusing on the frontal and temporal lobes. Our analysis identified miR-129-5p as consistently deregulated across all mutation conditions and brain regions. Functional investigations revealed a novel role of miR-129-5p in astrocytes, where its loss led to neuroinflammation and impaired neuronal support functions, including glutamate uptake. Depletion of miR-129-5p in astrocytes resulted in the loss of neuronal spines and altered neuronal network activity. These findings highlight miR-129-5p as a potential therapeutic target in neurodegenerative diseases and also sheds light on the role of astrocytes in Frontotemporal dementia pathogenesis.