Project description:To gain more insight into cellular responses to mercury, we have undertaken a large-scale analysis of the rice transcriptome during mercury stress.More transcripts were responsive to mercury during short (pooled from 1- and 3-h treatments) , as compared to long (24 h) exposures. After short exposures, these induced genes can be divided into different functional categories, mainly on the basis of cell wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Molecular mechanisms for the mercury toxicity in rice roots.
Project description:Epidemiological studies link exposure to mercury with autoimmune disease. Unfortunately, in spite of considerable effort, no generally accepted mechanistic understanding of how mercury actually functions with respect to the etiology of autoimmune disease is currently available. Nevertheless, autoimmune disease often arises because of defective B cell signaling. Because B cell signaling is dependent on phosphorylation cascades, in this report, we have focused on how mercury intoxication alters phosphorylation of B cell proteins in antigen-non stimulated (tonic) mouse splenic B cells. Specifically, we utilized mass spectrometric techniques to conduct a comprehensive unbiased global analysis of the effect of mercury on the entire B cell phosphoproteome. We found that the effects were pleotropic in the sense that large numbers of pathways were impacted. However, confirming our earlier work, we found that the B cell signaling pathway stood out from the rest, in that phosphoproteins which had sites which were affected by mercury, exhibited a much higher degree of connectivity, than components of other pathways. Further analysis showed that many of these BCR pathway proteins had been previously linked to autoimmune disease. Finally, dose response analysis of these BCR pathway proteins showed STIM1_S575, and NFAT2_S259 are the two most mercury sensitive of these sites. Because STIM1_S575 controls the ability of STIM1 to regulate internal Ca2+, we speculate that STIM1 may be the initial point of disruption, where mercury interferes with B cell signaling leading to systemic autoimmunity, with the molecular effects pleiotropically propagated throughout the cell by virtue of Ca2+ dysregulation.
Project description:The study aims essentially at the characterisation of suberin degradation mechanisms by Aspergillus nidulans, at a fundamental level. Suberin is an important protective barrier in plant, thus the study of its biodegradation significantly impacts on phytopatology. In addition, fungal suberin degrading enzymes might provide important insights to develop new waste management, bioremediation and biodeterioration prevention strategies.
Project description:In this study we tested the ability to predict organ injury from in vitro transcriptomics data at early time points after exposure to mercury chloride (12 and 24 hours). We selected mercury chloride, a compound extensively used in animal studies for its ability to cause acute kidney damage.
Project description:In this study we tested the ability to predict organ injury from in vivo transcriptomics data in male Hartley guinea pigs at early time points after exposure to mercury chloride (9 and 33 hours). We selected mercury chloride, a compound extensively used in animal studies for its ability to cause acute kidney damage.
Project description:In this study we tested the ability to predict organ injury from transcriptomics data in Sprague-Dawley rats at early time points after exposure to mercury chloride (10 and 34 hours). We selected mercury chloride, a compound extensively used in animal studies for its ability to cause acute kidney and liver damage.
Project description:To gain more insight into cellular responses to mercury, we have undertaken a large-scale analysis of the rice transcriptome during mercury stress.More transcripts were responsive to mercury during short (pooled from 1- and 3-h treatments) , as compared to long (24 h) exposures. After short exposures, these induced genes can be divided into different functional categories, mainly on the basis of cell wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Molecular mechanisms for the mercury toxicity in rice roots. Two-condition experiment, short exposures and long exposures. Comparison of mock control and rice seedlings treated with 25mM Hg during short (pooled from 1- and 3-h treatments), as compared to long (24 h) exposures.; Biological replicates: 3 control replicates (short and long exposures), 3 Hg-treated replicates (short and long exposures).