Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:Primary outcome(s): Analysis of the diversity and composition of the gut microbiome by 16S rRNA sequencing
Study Design: Observational Study Model : Others, Time Perspective : Prospective, Enrollment : 60, Biospecimen Retention : Collect & Archive- Sample with DNA, Biospecimen Description : Blood, Stool
Project description:Industrial anaerobic digestion (AD) represents a relevant energy source beyond today’s fossil fuels, wherein organic matter is recycled to methane gas via an intricate and complex microbial food web. Despite its potential, anaerobic reactors often undergo process instability over time, mainly caused by substrate composition perturbations, making the system unreliable for stable energy production. To ensure the reliability of AD technologies, it is crucial to identify microbial- and system responses to better understand the effect of such perturbations and ultimately detect signatures indicative of process failure . Here, we investigate the effect of microalgal organic loading rate (OLR) on the fermentation products profile, microbiome dynamics, and disruption/recovery of major microbial metabolisms. Reactors subjected to low- and high-OLR disturbances were operated and monitored for fermentation products and biogas production over time, while microbial responses were investigated via 16S rRNA gene amplicon data, shotgun metagenomics and metagenome-centric metaproteomics.
Project description:The impact of mono-chronic S. stercoralis infection on the gut microbiome and microbial activities in infected participants was explored. The 16S rRNA gene sequencing of a longitudinal study with 2 sets of human fecal was investigated. Set A, 42 samples were matched, and divided equally into positive (Pos) and negative (Neg) for S. stercoralis diagnoses. Set B, 20 samples of the same participant in before (Ss+PreT) and after (Ss+PostT) treatment was subjected for 16S rRNA sequences and LC-MS/MS to explore the effect of anti-helminthic treatment on microbiome proteomes.
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:<p>Dietary glycerol supplementation in aquaculture feed is seen as an alternative and inexpensive way to fuel fish metabolism, attenuate metabolic utilization of dietary proteins and, subsequently reduce nitrogen excretion. In this study, we evaluated the impact of dietary glycerol supplementation has on nitrogen excretion of European seabass (Dicentrarchus labrax) and its effects on metabolite profile and bacterial community composition of gut digesta. These effects were evaluated in a 60-day trial with fish fed diets supplemented with 0, 2.5 or 5% (w/w) refined glycerol. Nuclear magnetic resonance spectroscopy and high-throughput 16S rRNA sequencing characterized the effects of glycerol supplementation of digesta metabolite and bacterial community composition of 6h postprandial fish. Our results showed ammonia excretion was not altered by dietary glycerol supplementation and the highest glycerol dosage was associated with significant increases in amino acids and a significant decrease of ergogenic creatine in digesta metabolome. Concomitantly, significant decreases in putative amino acid degradation pathways were detected in the predicted metagenome analysis, suggesting a metabolic shift. Taxon-specific analysis revealed significant increases in abundance of some specific genera (e.g. Burkholderia and Vibrio) and bacterial diversity. Overall, our results indicate glycerol supplementation may decrease amino acid catabolism without adversely affecting fish gut bacterial communities.</p>
Project description:IL22 induces antimicrobial peptides which influnce microbiota. We used 16s rRNA gene sequencing (16s DNA-seq) to analyze the microbiota with Fc or IL-22Fc treatment.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.