Project description:In order to gain a better understanding of the impact of Vibrio parahaemolyticus infection on genetic regulation of Litopenaeus vannamei,we performed a miRNA-seq analysis in the hepatopancreas of Litopenaeus vannamei challenged with Vibrio parahaemolyticus, using the Illumina HiSeq 2500 platform.
Project description:It was found that Vibrio splendidus could survive under high concentration of tetracycline, and the coelomic fluid of sea cucumber increased the tolerance of Vibrio splendidus to tetracycline. Therefore, the transcriptome was determined to find the cause of drug resistance in Vibrio splendidus.
Project description:In marine Vibrio species, chitin-induced natural transformation enables bacteria to take up DNA from the external environment and integrate it into their genome via homologous recombination. Expression of the master competence regulator TfoX bypasses the need for chitin induction and drives expression of the genes required for competence in several Vibrio species. Here, we show that TfoX expression in two Vibrio campbellii strains, DS40M4 and NBRC 15631, enables high frequencies of natural transformation. Conversely, transformation was not achieved in the model quorum-sensing strain V. campbellii BB120 (previously classified as Vibrio harveyi). Surprisingly, we find that quorum sensing is not required for transformation in V. campbellii DS40M4. This result is in contrast to Vibrio cholerae that requires the quorum-sensing regulator HapR to activate the competence regulator QstR. However, similar to V. cholerae, QstR is necessary for transformation in DS40M4. To investigate the difference in transformation frequencies between BB120 and DS40M4, we used previously studied V. cholerae competence genes to inform a comparative genomics analysis coupled with transcriptomics. BB120 encodes homologs of all known competence genes, but most of these genes were not induced by ectopic expression of TfoX, which likely accounts for the non-functional natural transformation in this strain. Comparison of transformation frequencies among Vibrio species indicates a wide disparity among even closely related strains, with Vibrio vulnificus having the lowest functional transformation frequency. We show that ectopic expression of both TfoX and QstR is sufficient to produce a significant increase in transformation frequency in Vibrio vulnificus.
Project description:Type VI secretion systems (T6SS) are widely distributed among Vibrio species, yet their roles in the coexistence of toxigenic and non- toxigenic strains remain unclear. Here, we report a novel orphan T6SS effector-immunity module, TseVs-TsiVs, primarily harbored by non- toxigenic Vibrio cholerae. TseVs exhibits robust vibriocidal activity, specifically targeting susceptible Vibrios (lacking TsiVs). TseVs forms dual-membrane, ion-selective pores that collapse Na⁺/K⁺ homeostasis, resulting in membrane depolarization and ATP depletion. Remarkably, non-Vibrio bacteria evade TseVs through proton motive force (PMF)-dependent resilience, uncovering a previously unrecognized immunity-independent defense strategy. Furthermore, tseVs+ non- toxigenic V. cholerae strains are globally distributed and have dominated in recent decades, highlighting TseVs’s ecological significance in Vibrio population dynamics. By linking TseVs’s bioenergetic assassination to Vibrio population shifts, we demonstrate how T6SS effectors shape microbial genetic diversity. Our findings suggest that TseVs represents a promising model for precision antimicrobial strategies, minimizing collateral damage to commensal microbiota.
Project description:In order to gain a better understanding of the impact of Vibrio parahaemolyticus infection on genetic regulation of Litopenaeus vannamei,we performed a transcriptome analysis in the hepatopancreas of Litopenaeus vannamei challenged with Vibrio parahaemolyticus, using the Illumina HiSeq 2500 platform.
Project description:We report the genome-wide analysis from chromatin immunoprecipitated DNA (ChIP-sequencing) at very high resolution of the DNA binding pattern of ParBVc1 on the chromosome of Vibrio cholerae.