Project description:Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph) with a higher tail. The tadpoles revert to a normal phenotype upon removal of the larval salamander threat. The objective of the present study was to use our own fabricated tadpole Rana pirica cDNA microarray to profile gene expression patterns during the predation threat.
Project description:Lead (Pb) is a widespread environmental toxicant that can elicit a wide variety of adverse effects in aquatic species. In fish, exposure to Pb can induce oxidative stress and reduce antioxidant capacity and there is evidence that Pb-induced developmental abnormalities are the result of dysregulated metabolism pathways but to date, no studies have characterised the molecular mechanisms of lead toxicity in amphibians. To investigate this, we coupled transcriptomic responses and early-life stage toxicity testing to identify specific molecular mechanisms that drive the adverse effects of lead, in Xenopus laevis. Embryos were exposed to one of the concentrations (0, 70, 210 and 630 ng/L) of lead (II) nitrate starting from 2 days post fertilization (dpf) until 6 dpf and 21 dpf to examine the transcriptomic and apical responses, respectively. We observed common dysregulated pathways and with similar magnitude at medium and high lead concentrations, but a phenotypic response only with the highest lead level. RNA Seq analysis showed about ~250 differentially expressed genes that could be further categorized into KEGG pathways based on their involvement in key biological processes. The most dysregulated pathways were Glutathione metabolism, Cytochrome P450 (drug/ xenobiotic metabolism) and Steroid hormone biosynthesis. Developmental studies showed that tadpoles exposed to the highest Pb concentration (630 ug/L) had significantly decreased total length and higher proportion of developmental abnormalities. Therefore, evaluating gene expression responses can provide early indication of toxicological mechanisms of lead effects in amphibians. As with fish, dysregulated metabolic pathways are most likely the molecular mechanisms underlying lead toxicity in ELS amphibians and contribute to the altered growth and developmental abnormalities observed in this study.
Project description:Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph) with a higher tail. The objective of the present study was to use Affymetrix Xenopus Genechip to profile gene expression in the tail tissue by different predation threat. Tadpoles of Rana pirica treated with larvae salamander for 8days (brainS1, brainS2, brainS3) were analyzed with triplicate. Controls were cultured for 8days without larvae salamander (brainC1,brainC2,brainC3,brainC4,brainC5,brainC6). Brains from tadpoles after 8days of each treatment were dissected for RNA extraction and gene expression analysis using Affymetrix Xenopus Genechip arrays.
Project description:Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph) with a higher tail. Whereas, dragon fly also induced higher tail tadpole. The tadpoles revert to a normal phenotype upon removal of the larval salamander or dragon fly threat. The objective of the present study was to use Affymetrix Xenopus Genechip to profile gene expression in the tail tissue by different predation threat. Tadpoles of Rana pirica treated with larvae salamander for 8days (S1, S2, S3) or dragon fly for 8days (Y1,Y2, Y3) were analyzed with triplicate. Removal experiments were also treated with predators for 4days and then removed predators from tadpoles (-S1,-S2, -S3) or (-Y1,-Y2,-Y3). Controls were cultured for 8days without predators (C2, C3). Tails from tadpoles after 8days of each treatment were dissected for RNA extraction and gene expression analysis using Affymetrix Xenopus Genechip arrays.
Project description:Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph) with a higher tail. Whereas, dragon fly also induced higher tail tadpole. The tadpoles revert to a normal phenotype upon removal of the larval salamander or dragon fly threat. The objective of the present study was to use Affymetrix Xenopus Genechip to profile gene expression in the tail tissue by different predation threat.
Project description:Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph) with a higher tail. The objective of the present study was to use Affymetrix Xenopus Genechip to profile gene expression in the tail tissue by different predation threat.
Project description:In this study, we compared the metabolic networks in the liver and tail between pro-metamorphic and climax metamorphic (natural and T3-driven) Rana omeimontis tadpoles by a combination of metabolomics and transcriptomics.
Project description:Plastic particles in water environment can adsorb heavy metals, leading to combined toxicity to aquatic organisms. However, current conclusions are mostly obtained based on cell population-average responses. Heterogeneity effects among cell populations in aquatic organisms remain unclear. This study analyzed the heterogeneity effects of 200 μg/L 100 nm polystyrene nanoplastics (PS-NPs), 50 μg/L lead (Pb), and their combined exposures on zebrafish intestine cells by single-cell RNA sequencing.A total of 38640 cells in the zebrafish intestine was obtained and identified as seven cell populations, including enterocytes, macrophages, neutrophils, B cells, T cells, enteroendocrine cells, and goblet cells.Co-exposure of PS-NPs and Pb caused similar transcriptome profiles with PS-NPs exposure in macrophages, which changed immunological recognition processes. The Pb exposure influenced the macrophages by direct cytotoxicity. However, the Pb alone and combined exposures induced similar modes of action in the enterocytes, including the generation of oxidative stress and abnormal lipid metabolism.
Project description:Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph) with a higher tail. The tadpoles revert to a normal phenotype upon removal of the larval salamander threat. The objective of the present study was to use our own fabricated tadpole Rana pirica cDNA microarray to profile gene expression patterns during the predation threat. Experimental design used to produce control, bulgy morph and reversion type tadpoles for the microarray analysis was as follows. One group of tadpoles was placed with a larval salamander for 4 days to induce formation of the bulgy morph phenotype; the predator was then removed and the tadpoles were allowed to revert to the normal phenotype for 4 days. This group is termed “8 day out tadpoles”. A second group of tadpoles was placed with the predator for the full 8 days. The control group was not exposed to a predator. Tadpoles from the predator induced groups were sampled at 6 hours, 4 days and 8 days, those from the control group at 0 hour, 4 days, and 8 days. The comparative design of the microarray analysis was performed as (Exp 6 hours VS Cont 0 hours), (Exp 4 days VS Cont 4 days), (Exp 8 days VS Cont 8 days), and (Exp 8 days-Out VS Exp 8 days), respectively. These analyses were performed in triplicate with a dye swap experiment. Samples 0hr~8days were as follows. Sample plate (1~3A):Channel 1-Cy5 Experiment,Channel 2-Cy3 Control. Sample plate (1~3B):Channel 1-Cy5 Control, Channel 2-Cy3 Experiment. In case of 8day-out samples were as follows. Sample plate (1~3A):Channel 1-Cy5 8day-out,Channel 2-Cy3 full 8day. Sample plate (1~3B):Channel 1-Cy5 full 8day,Channel 2-Cy3 8day-out.