Project description:Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) are the predominant etiological agents of hand, foot, and mouth disease (HFMD) and both belong to the human enterovirus A species of the Picornaviridae family. These viruses share similar genetic homology, although the clinical manifestations of HFMD caused by the two viruses have some discrepancies. Furthermore, the underlying mechanisms leading to these differences remain unclear. microRNAs (miRNAs) participate in numerous biological or pathological processes, including host responses to viral infections, by targeting messenger RNAs (mRNAs) for translational repression or degradation. Here, we focused on differences in miRNA expression patterns in peripheral blood mononuclear cells (PBMCs) of rhesus monkeys infected with EV71 or CA16 at different time points using high-throughput sequencing technology. For the first time, this study demonstrated that EV71 and CA16 infection result in specific miRNA expression patterns in PBMCs.
Project description:During the current SARS-CoV-2 pandemic, a variety of mutations have been accumulated in the viral genome, and currently, four variants of concerns (VOCs) are considered as the hazardous SARS-CoV-2 variants to the human society. The newly emerging VOC, the B.1.617.2/Delta variant, closely associates with a huge COVID-19 surge in India in Spring 2021. However, its virological property remains unclear. Here, we show that the B.1.617.2/Delta variant is highly fusogenic, and notably, more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates the spike protein cleavage and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity than the parental virus. Our data suggest that the P681R mutation is a hallmark that characterizes the virological phenotype of the B.1.617.2/Delta variant and is closely associated with enhanced pathogenicity.
Project description:To investigate the virological properties of a SARS-CoV-2 variant, Omicron BA.2, we generated chimeric recombinant viruses that express GFP and encodes the S gene of B.1.1 (ancestral D614G-bearing virus), Delta, BA.1 and BA.2. To verify the genome sequence of the working viruses, we performed viral RNA-sequencing of the viral stock.
Project description:To investigate the virological properties of SARS-CoV-2 variants, we amplified the clinical isolates of an early pandemic D614G-bearing isolate (B.1.1 lineage, strain TKYE610670; GISAID ID: EPI_ISL_479681), a Delta isolate (B.1.617.2 lineage, strain TKYTK1734; GISAID ID: EPI_ISL_2378732) and an Omicron isolate (BA.1 lineage, strain TY38-873; GISAID ID: EPI_ISL_7418017) and prepared the working viruses.
Project description:This study used virological, histological, and global gene expression data to compare the virulence of two 2009 pH1N1 isolates from human (A/California/04/2009) and swine (A/swine/Alberta/25/2009) to that of a 1918-like classical swine influenza virus (A/swine/Iowa/1930) in a pig model of infection. The overall goal of this study was to characterize the clinical, histological, virological and global gene expression responses to three distinct influenza A isolates in an experimental pig model of influenza infection. We compared the pathogenesis of two pH1N1 viruses, one derived from a human patient (A/CA/04/09 [CA09]) and the other from swine (A/swine/Alberta/25/2009 [Alb09]), with that of the 1918-like classical swine influenza virus (A/swine/Iowa/1930 [IA30]) in the pig model. Both pH1N1 isolates induced clinical symptoms such as coughing, sneezing, decreased activity, fever, and labored breathing in challenged pigs, but IA30 virus did not cause any clinical symptoms except fever. Although both the pH1N1 viruses and the IA30 virus caused lung lesions, the pH1N1 viruses were shed from the nasal cavities of challenged pigs whereas the IA30 virus was not. Microarray was used to assess global gene expression in the lungs at 3 and 5 days post-infection.
Project description:In this study, models of CA10, CA16 and EV71 infection were established in 7-day-old Institute of Cancer Research (ICR) mice by intraperitoneal injection to analyze the pathogenicity of these viruses. RNA sequencing analysis was used to screen the differentially expressed genes (DEGs) after CA10 infection, and innate immune-related pathways were activated in muscle. Compared with CA16 and EV71 infection, CA10 may have an inhibitory effect on Th cell differentiation and cell growth. Additionally, the common DEGs in the three viruses were most enriched in the immune system response, including the Toll-like receptor pathway and the nucleotide-binding and oligomerization domain (NOD)-like pathway. Our findings revealed a group of genes that coordinate in response to CA10 infection and are shared by the three viruses, which increases our understanding of the pathological mechanism of HFMD.
2024-09-01 | GSE237009 | GEO
Project description:Deep sequencing of virological samples from patients infected with influenza A viruses
| PRJNA722099 | ENA
Project description:Surveillance and outbreak investigation