Project description:Bacterial wilt caused by Ralstonia solanacearum is a lethal, soil-borne disease of tomato. Control of the disease with chemicals and crop rotation is insufficient, because the pathogen is particularly well adapted for surviving in the soil and rhizosphere. Therefore, cultivar resistance is the most effective means for controlling bacterial wilt, but the molecular mechanisms of resistance responses remain unclear. We used microarrays to obtain the characteristics of the gene expression changes that are induced by R. solanacearum infection in resistant cultivar LS-89 and susceptible cultivar Ponderosa.
Project description:Poplar is a short-rotation woody crop routinely studied because of its importance as a sustainable bioenergy crop. The establishment of a successful poplar plantation partially depends on its rhizosphere, a dynamic zone governed by complex interactions between plant roots and a plethora of commensal, mutualistic, symbiotic, or pathogenic microbes that shape plant fitness. Here, we examined a consortium of ectomycorrhizal fungi and a beneficial Pseudomonas sp. strain GM41 for their effect on plant growth (height, stem girth, leaf, and root growth) and growth rate over time of four poplar genotypes of Populus trichocarpa. We also compare the total organic carbon and plant exometabolites profiles produced by these different poplar genotypes when colonized by the microbial consortium. We determined that when comparing the treatments to the control, plant growth parameters were not significantly different across the poplar genotypes eight weeks post-inoculation. However, total organic carbon and exometabolite profiles were significantly different between the genotypes and due to the treatments. These findings indicate that this microbial consortium can induce early and different signaling responses in poplar.
Project description:Sorghum (Sorghum bicolor) is the fifth most important cereal crop in the world. It is an annual C4 crop having a high biomass, used widely, and has a strong resistance to stress. Obviously, there are many benefits of planting sorghum on marginal soils such as saline-alkali land.
Project description:Sorghum is multipurpose crop worldwide serving as food, feed, and feedstock for biofuels, whose floral transition and vegetative growth heavily depend on photoperiod. Although multiple sorghum maturity loci (Ma1-Ma6) have been associated with photoperiod sensitivity in previous QTL studies, the underlying molecular mechanisms remain poorly understood. By functional characterizing sorghum SbGhd7 (Ma6) and integrating RNA-seq analysis of Ghd7 overexpression sorghum, ChIP-seq analysis of SbGhd7 binding sites in protoplasts and molecular studies, we discovered that SbEhd1 and SbFT10 are the direct targets of SbGhd7. SbGhd7 is a transcriptional repressor and inhibits florigen-induced floral transition by repressing SbEhd1 and SbFT10 expression.
Project description:Sorghum is multipurpose crop worldwide serving as food, feed, and feedstock for biofuels, whose floral transition and vegetative growth heavily depend on photoperiod. Although multiple sorghum maturity loci (Ma1-Ma6) have been associated with photoperiod sensitivity in previous QTL studies, the underlying molecular mechanisms remain poorly understood. By functional characterizing sorghum SbGhd7 (Ma6) and integrating RNA-seq analysis of Ghd7 overexpression sorghum, ChIP-seq analysis of SbGhd7 binding sites in protoplasts and molecular studies, we discovered that SbEhd1 and SbFT10 are the direct targets of SbGhd7. SbGhd7 is a transcriptional repressor and inhibits florigen-induced floral transition by repressing SbEhd1 and SbFT10 expression.
Project description:Gene expression patterns of the plant colonizing bacterium,Pseudomonas putida KT2440 were evaluated as a function of growth in the Arabidopsis thaliana rhizosphere. Gene expression in rhizosphere grown P. putida cells was compared to gene expression in non-rhizosphere grown cells. Keywords: Gene expression
Project description:Background: Sorghum bicolor is a remarkably drought tolerant cereal crop. Its natural biodiversity that enables this tolerance has developed in sub-Saharan Africa. The sequencing of the sorghum genome in 2009 has expedited research of this crop which has also been proposed as a model C4 cereal crop for genomics. In this study, the genetic response mechanisms involved in sorghums’ tolerance to progressive water deficit and moderate re-watering were investigated in three previously uncharacterized South African landraces (designated: LR5, LR6 and LR35) using cDNA microarrays comprising 35 899 transcript probes. Results: Across the three landraces, significant differential expression of 1 797 genes, including 264 genes with currently unknown functions, were altered in response to progressive water stress and re-watering. The modulated sorghum genes had homology to proteins involved in growth, regulation, and protection. Gene ontology analysis identified significant enrichment of 26 genes involved in the ‘response to abiotic stimulus’ GO category in LR6 during severe stress. The expression of USP responded to progressive water stress and moderate re-watering in LR6 and LR35. Moreover, our results indicate a putative role for β-alanine betaine biosynthesis in drought tolerance of sorghum. Conclusions: This study identified the drought responsive gene complement of three previously uncharacterized South African sorghum landraces. Each landrace is a distinct genotype and similar responses to water deficit and re-watering were not expected. Functional characterizations of some of the differentially expressed genes found in this study may be used as possible targets for marker-assisted breeding or transgenic initiatives for sorghum and, other closely related crop species.
Project description:Currently, Baijiu production is performed with different varieties of sorghum that vary considerably in price. Although studies have shown that sorghum varieties affect Baijiu quality, the specific effects of sorghum varieties on Baijiu fermentation have not been thoroughly studied. By using multiple-omics analyses, we compared the fermentation process and final quality of Baijiu brewed from four representative sorghum varieties and identified the involved microbial mechanisms. In addition to providing insight into Baijiu fermentation mechanisms, the results can guide the selection of suitable raw materials for production and future breeding of high quality varieties.