Project description:Nosema is a diverse fungal genus of microsporidian unicellular, obligate symbionts of insects and other arthropods. We performed a comparative genomic analysis of N. muscidifuracis, a Nosema species infecting parasitoid wasp genus Muscidifurax, with six other genome-sequenced Nosema species. A sequence motif containing at least three consecutive Cs was significantly enriched immediately upstream of the start codon in all seven Nosema genomes. Interestingly, this motif is present in ~90% of highly expressed genes, compared to ~20% in lowly expressed genes N. muscidifuracis, which may function as a cis-regulatory element for gene expression control and regulation. Our study provides new insights into the gene regulation evolution in Nosema.
2023-11-26 | GSE248484 | GEO
Project description:Organelle genomes of species of genus Rhizosolenia
| PRJNA686853 | ENA
Project description:Chloroplast genomes of Heterotropa (genus Asarum Aristolochiaceae)
| PRJDB9302 | ENA
Project description:Evolution of genomes in the genus Rosa
| PRJNA454073 | ENA
Project description:Organelle genomes of species of genus Thalassiosira
Project description:The genus Lactobacillus contains over 100 different species that were traditionally considered to be uniformly non-motile. However, at least twelve motile species are known to exist in the L. salivarius clade of this genus. Of these, Lactobacillus rumnis is the only motile species that is also autochthonous to the mammalian gastrointestinal tract. The genomes of two L. ruminis strains, ATCC25644 (human isolate, non-motile) and ATCC27782 (bovine isolate, motile) were sequenced and annotated to identify the genes responsible for flagellum biogenesis and chemotaxis in this species. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644 during the motile growth phase.
Project description:The chlorinated ethene-respiring bacteria of the genus Dehalococcoides are important for bioremediation. A microarray targeting genes from all available sequenced genomes of the Dehalococcoides genus was designed with 4305 probe sets to target 98.6% of all genes from strains 195, CBDB1, BAV1, and VS. The microarrays were validated with genomic DNA (gDNA) of strains 195 and BAV1 and satisfactory analytical reproducibility, quantitative response and gene detection accuracy were obtained. These microarrays were applied to query the genomes of two recently isolated Dehalococcoides strains, ANAS1 and ANAS2. Strains ANAS1 and ANAS2 can both couple the reduction of TCE, cDCE and 1,1-DCE but not PCE and tDCE with growth while only strain ANAS2 couples VC reduction to growth. Analysis of the respective gDNA using the microarrays showed that the genomes of both strains are similar to each other and to strain 195, except for genes that are within the previously defined integrated elements (IEs) or high plasticity regions (HPRs). Similar results to the combined isolates were obtained when gDNA of ANAS, the enrichment culture from which the two Dehalococcoides isolates originated, was applied to the microarrays. The genome similarities, together with the distinct chlorinated ethene usage of strains ANAS1, ANAS2 and 195 demonstrate that closely phylogenetically related strains can be physiologically different. This incongruence between physiology and core genome phylogeny appears to be driven by the presence of distinct reductive dehalogenase (RDase)-encoding genes with characterized chlorinated ethene functions (pceA, tceA in strain 195; tceA in strain ANAS1; vcrA in strain ANAS2). Genes encoding central metabolic functions of strain 195 were all detected in strains ANAS1 and ANAS2, while interestingly, the tryptophan operon of these strains is similar to that of strain VS. Overall, the microarrays are a valuable high-throughput tool for comparative genomics of un-sequenced Dehalococcoides-containing samples.