Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.
Project description:18S V4 region - Tropics to poles: Diversity and composition of coastal eukaryotic marine microalgae communities across five ecoregions.
Project description:Purpose: Pre-ribosomal RNA is cleaved at defined sites to release the mature ribosomal RNAs, but the functions of many ribosome biogenesis factors involved in 18S rRNA release are not known. We apply an in vivo cross-linking technique coupled with deep sequencing (CRAC) that captures transcriptome-wide interactions between the yeast PIN domain protein Utp23 and its targets in a living cell. Methods: We apply CRAC to an HTP-tagged Utp23 protein (HTP: His6 - TEV cleavage site - two copies of the z-domain of Protein A) in budding yeast. At least two independent experiments were performed and analysed separately. A non-tagged yeast strain was also used as a negative control. Results: We found that yeast Utp23 UV-crosslinked in vivo to the snR30 snoRNA and to the eukaryotic-specific expansion segment 6 (ES6) in the 18S rRNA. Conclusion: According to our crosslinking data, Utp23 is perfectly positioned to coordinate release of the snR30 snoRNA from the 18S ES6 region.
Project description:Abstract - 18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. While this process is critical for ribosome quality control, the mechanisms underlying nonfunctional 18S rRNA turnover remain elusive, particularly in mammals. Here, we show that mammalian 18S NRD initiates through the integrated stress response (ISR) via GCN2. Nonfunctional 18S rRNA induces translational arrest at start sites. Biochemical analyses demonstrate that ISR activation limits translation initiation and attenuates collisions between scanning 43S preinitiation complexes and stalled nonfunctional ribosomes. The ISR promotes 18S NRD and 40S ribosomal protein turnover by RNF10-mediated ubiquitination. Ultimately, RIOK3 binds the resulting ubiquitinated 40S subunits and facilitates 18S rRNA decay. Overall, mammalian 18S NRD acts through GCN2, followed by ubiquitin-dependent 18S rRNA degradation involving the ubiquitin E3 ligase RNF10 and the atypical protein kinase RIOK3. These findings establish a dynamic feedback mechanism by which the GCN2-RNF10-RIOK3 axis surveils ribosome functionality at the translation initiation step.