Project description:We used the mummichog (Fundulus heteroclitus) array we developed to test whether our arrays could be used to monitor the efficacy of remediation at an estuarine Superfund site. Shipyard Creek is a chromium-contaminated Superfund site in Charleston, SC undergoing remediation, therefore it provides a unique opportunity to study the efficacy of arrays as a molecular biomarker in of toxicant effects in mummichogs. Mummichogs were captured in Shipyard Creek in Charleston, SC prior to remediation (2000), after remediation began (2003), and as remediation further progressed (2005). Simultaneously, mummichogs were collected from a reference site at the Winyah-Bay National Estuarine Research Reserve (NERR). The hepatic gene expression pattern of fish captured at Shipyard Creek showed wide differences from the fish captured at NERR in 2000. As remediation progressed the gene expression pattern of fish captured at Shipyard Creek became increasingly similar to fish captured at NERR, and the number of genes differently expressed dropped from 22 to 4. The magnitude of differential gene expression of the individual genes also decreased during remediation. The recovering gene expression profile is associated with lower chromium bioavailability, demonstrated through significantly decreased body burden and sediment concentrations. For example, sediment concentrations at Shipyard Creek were 80-fold greater than NERR in 2000, 51-fold greater in 2003, and only 8-fold greater in 2005. However, hydraulic dredging in 2005 stirred up the sediments and increased body burden of chromium even though chromium sediment concentrations continued to drop. Therefore, the number of differentially expressed genes increased to 9. Overall, the data supports our hypothesis that arrays can be used to monitor site mitigation, as the number of genes differentially expressed mimics the body burden and also indicates when on-site remediation is increasing bioavailability. Keywords: Field site
Project description:We used the mummichog (Fundulus heteroclitus) array we developed to test whether our arrays could be used to monitor the efficacy of remediation at an estuarine Superfund site. Shipyard Creek is a chromium-contaminated Superfund site in Charleston, SC undergoing remediation, therefore it provides a unique opportunity to study the efficacy of arrays as a molecular biomarker in of toxicant effects in mummichogs. Mummichogs were captured in Shipyard Creek in Charleston, SC prior to remediation (2000), after remediation began (2003), and as remediation further progressed (2005). Simultaneously, mummichogs were collected from a reference site at the Winyah-Bay National Estuarine Research Reserve (NERR). The hepatic gene expression pattern of fish captured at Shipyard Creek showed wide differences from the fish captured at NERR in 2000. As remediation progressed the gene expression pattern of fish captured at Shipyard Creek became increasingly similar to fish captured at NERR, and the number of genes differently expressed dropped from 22 to 4. The magnitude of differential gene expression of the individual genes also decreased during remediation. The recovering gene expression profile is associated with lower chromium bioavailability, demonstrated through significantly decreased body burden and sediment concentrations. For example, sediment concentrations at Shipyard Creek were 80-fold greater than NERR in 2000, 51-fold greater in 2003, and only 8-fold greater in 2005. However, hydraulic dredging in 2005 stirred up the sediments and increased body burden of chromium even though chromium sediment concentrations continued to drop. Therefore, the number of differentially expressed genes increased to 9. Overall, the data supports our hypothesis that arrays can be used to monitor site mitigation, as the number of genes differentially expressed mimics the body burden and also indicates when on-site remediation is increasing bioavailability. Keywords: Field site
Project description:We used the mummichog (Fundulus heteroclitus) array we developed to test whether our arrays could be used to monitor the efficacy of remediation at an estuarine Superfund site. Shipyard Creek is a chromium-contaminated Superfund site in Charleston, SC undergoing remediation, therefore it provides a unique opportunity to study the efficacy of arrays as a molecular biomarker in of toxicant effects in mummichogs. Mummichogs were captured in Shipyard Creek in Charleston, SC prior to remediation (2000), after remediation began (2003), and as remediation further progressed (2005). Simultaneously, mummichogs were collected from a reference site at the Winyah-Bay National Estuarine Research Reserve (NERR). The hepatic gene expression pattern of fish captured at Shipyard Creek showed wide differences from the fish captured at NERR in 2000. As remediation progressed the gene expression pattern of fish captured at Shipyard Creek became increasingly similar to fish captured at NERR, and the number of genes differently expressed dropped from 22 to 4. The magnitude of differential gene expression of the individual genes also decreased during remediation. The recovering gene expression profile is associated with lower chromium bioavailability, demonstrated through significantly decreased body burden and sediment concentrations. For example, sediment concentrations at Shipyard Creek were 80-fold greater than NERR in 2000, 51-fold greater in 2003, and only 8-fold greater in 2005. However, hydraulic dredging in 2005 stirred up the sediments and increased body burden of chromium even though chromium sediment concentrations continued to drop. Therefore, the number of differentially expressed genes increased to 9. Overall, the data supports our hypothesis that arrays can be used to monitor site mitigation, as the number of genes differentially expressed mimics the body burden and also indicates when on-site remediation is increasing bioavailability. Keywords: Field site
Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:Although metabolic engineering approaches have benefited the development of industrial strains enormously, they are often only partially successful, such that additional rounds of modification are generally needed to ensure microbial strains meet all the requirements of a particular process. Systems biology approaches can aid in yeast design providing an integrated view of yeast physiology and helping to identify targets for modification. Among other phenotypes, the generation of wine yeasts that are able to produce wines with reduced ethanol concentrations has been the focus of extensive research. However, while producing low-alcohol wines, these strains generally produce off-flavour metabolites as metabolic by-products. We therefore used transcriptomics, proteomics and metabolomics to investigate the physiological changes of such an engineered low-ethanol wine strain during wine fermentation to determine possible strategies for by-product remediation. Integration of ‘omics data led to the identification of several processes, including reactions related to the pyruvate node and redox homeostasis, as significantly different compared to a non-engineered parent strain, with acetaldehyde and 2,4,5-trimethyl 1,3-dioxolane identified as the main off-flavour metabolites. Gene remediation strategies were applied to decrease the formation of these metabolites, while maintaining the ‘low-alcohol’ phenotype.
Project description:17α-Ethinylestradiol (EE2) is a ubiquitous aquatic contaminant shown to decrease fish fertility at low concentrations, especially in fish exposed during development. The mechanisms of the decreased fertility are not fully understood. In this study, we perform transcriptome analysis by RNA sequencing of testes from zebrafish with previously reported lowered fertility due to exposure to low concentrations of EE2 during development. Fish were exposed to 1.2 and 1.6 ng/L (measured concentration) of EE2 from fertilization to 80 days of age, followed by 82 days of remediation in clean water.
Project description:17-ethinylestradiol (EE2) is a synthetic estrogen commonly used as an active substance in oral contraceptives. It is frequently found in waste water effluent and raise concern due to its persistent nature. EE2 binds to estrogen receptors with similar affinity to oestradiol and acts as one of the most potent hormone mimics found in the environment. Estrogen is involved in many aspects of the development of the neuroendocrine system influencing both brain structure and behavior. We and others have reported a significant effect on non-reproductive behaviors in adult fish and in recent studies we found that developmental exposure to EE2 resulted in an anxiogenic phenotype as adults even after a long remediation period. In this study we aim to study possible mechanisms behind the behavior alterations of zebrafish developmentally exposed to EE2 by sequencing the whole brain transcriptome. Zebrafish embryos were exposed to 0, 2.14 and 7.34 ng/L EE2 from 1 day to 80 days post fertilization. After the exposure period a remediation period of 120 days followed before the fish were sampled. 3 male brains from the control group (0 ng/L) and the 2.14 ng/L group were sampled and 3 female brains from the control group (0 ng/L) and 7.34 ng/L were sampled.