Project description:Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. The combination of constitutive and acquired traits governs drought tolerance, which is crucial for maintaining crop productivity under drought. Drought affects protein synthesis, to uncover the translational landscape with response to drought stress in rice, polysome bound mRNA sequencing at anthesis stage in resistant APO and sensitive IR64 genotypes were performed. Our results demonstrate that drought tolerant genotype maintains higher transcripts bound to poly-ribosomes which facilitate higher protien synthesis which impacted on photosynthesis, spikelet fertility, seed filing and yield under drought stress. We identified many novel LncRNAs and relevant genes associated with translation which can play important role in manitaing grain protein content with drought tolerance.
Project description:In order to analyze changes in gene expression after drought stress, we used ripening fruits of MicroTom. By comparing with the control group, mRNA whose expression changes due to drought stress was extracted. Using microarray analysis, we aimed to understand the overall expression change of mRNA in fruits after drought stress.
2022-05-07 | GSE139290 | GEO
Project description:Transcriptome sequencing of drought resistance Heterosis in Kenaf
Project description:In order to increase our understanding on the epigenetic regulation in response to abiotic stresses in plants, sRNA regulation in sugarcane plants submitted to drought stress was analyzed. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. An enrichment of 22-nt sRNA species was observed in leaf libraries. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profile of eight miRNA was verified in leaf samples by stem-loop qRT-PCR assay. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. 22-nt miRNA triggered siRNA-candidates production by cleavage of their targets in response to drought stress. Some genes of sRNA biogenesis were down-regulated in tolerant genotypes and up-regulated in sensitive in response to drought stress. Our analysis contributes to increase the knowledge on the roles of sRNA in epigenetic-regulatory pathways in sugarcane submitted to drought stress.
Project description:We have characterized the changes in miRNA expression profiles in rice leaves under drought stress and As stress and compared these to unstressed leaves. 10 pairs of drought responsive and 8 pairs of As responsive miRNA-gene were identified and validated by qRT-PCR. This study identifies putative specific miRNA-mRNA regulatory modules with roles during drought and As stress. Putative microRNAs identified in this study are involved in hormone signaling, lipid and carbohydrate metabolism, and antioxidant defence. The results of this study will assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during abiotic stress and may contribute to the development of strategies to engineer drought and heavy metal resistance.
Project description:This study was aimed at deciphering the impact of drought and heat on genome-wide gene expression in flag leaf of barley. We employed high-throughput sequencing of mRNA to identify genes that are associated with response to drought or heat and to their combination. Our study demonstrated that under combined stress, drought was the dominant factor affecting genes expression. It was also confirmed for phenotypic traits and chlorophyll fluorescence parameters. Drought- and heat-responsive genes were associated majorly with photosynthesis, abscisic acid signaling and lipids transport. Dehydrin encoding genes were found to be universal stress-responsive genes. Stress-induced genes specific to the flag leaf size were also found. This research provided novel insight into molecular mechanisms of barley flag leaf that determine drought and heat response, also during their co-occurrence.
Project description:Abiotic environmental stresses cause serious economic losses in agriculture. These stresses include temperature extremes, high salinity and drought. To isolate drought-responsive novel coding and noncoding genes, we used the next generation sequencing method from three rice cultivars (wild type nipponbare, nipponbare AP2 transgenic plants, wild type vandana). 36 NGS data of mRNA-seq, small RNA-seq, riboZero-seq were analyzed. For the analyses of these data we constructed a TF-TG (Transcription Factor-Target Gene) network and an ap2 rooted cascading tree. Using these networks and tress we isolated lincRNAs, differentially expressed miRNAs and their targets. We identified several drought stress-related novel/function unknown coding transcripts (transcription factors and functional genes) and non-coding transcripts (small noncoding transcripts such as microRNA and long noncoding transcripts) from these database analyses and have constructed databases of drought stress-related coding and noncoding transcripts Identification of drought-responsive Regulatory Coding and Non-coding Transcripts from rice by deep RNA sequencing
Project description:Purpose: The goal of this study are to reveal the internal mechanism of Bacillus pumilus G5 and silicon increased Glycyrrhiza uralensis Fisch. seedlings drought-tolerance by RNA-Seq. Methods: mRNA profiles of Glycyrrhiza uralensis Fisch. Seedling in five treatment: control treatment, drought stress treatment, drought stress with G5 treatment, drought stress with Si treatment and drought stress with G5 combined Si treatment. Results: The full-length transcriptome sequencing of 15 samples was completed, and the clean data of each sample was 6.28GB. All the consistent transcript sequences were aligned to the reference genome by minimap2 software and then de-redundant analysis was performed. Finally, 37267 genes were obtained. A total of 6934 DEGs were identified in four comparisons (D vs CK, DB vs D, DSi vs D, and DBSi vs D), among which are 967, 1559, 1278 and 3130 DEGs in four comparisons, respectively. Conclusions: Our study help to better understand the underlying molecular mechanisms of Bacillus pumilus G5 and silicon improve the drought-tolerance of G. uralensis.
Project description:To dissect the molecular mechanisms underlying drought tolerance (DT) in rice, transcriptome differences of a DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing. Results revealed a differential constitutive gene expression prior to stress and distinct global transcriptome reprogramming among three genotypes under time-series drought stress, consistent with their differential genotypes and DT phenotypes. DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing.The drought stress treatment was started by withholding water at the tillering stage. The days were counted after the AWC in the soil reached 20% to allow drought measurements at precisely determined intervals, and the soil water content reached 15%, 10% and 7.5% after 1d, 3d and 4d drought treatment, respectively.Three top leaves for each sample were harvested for each genotype under 1d and 3d drought stress and control conditions. All samples were immediately frozen in liquid nitrogen and stored at -80C and then for transcriptome sequencing.
Project description:In this work, we performed high throughput sequencing of small RNA libraries in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) to investigate the response mediated by miRNAs in these plants under control conditions, submergence, drought and alternated drought-submergence or submergence-drought stress. After Illumina sequencing of 8 small RNA libraries, we obtained from 16,139,354 to 46,522,229 raw reads across the libraries. Bioinformatic analysis identified 88 maize miRNAs and 76 miRNAs from other plants differentially expressed in maize and/or in teosinte in response to at least one of the treatments, and revealed that a larger set of miRNAs were regulated in maize than in teosinte in response to submergence and drought stress.