Project description:In order to investigate the diurnal oscillations of ruminal bacteria, and their responses to the changes in different feeding patterns, we conducted an animal experiment by feeding the sheep ad libitum with a hay-based diet (50% of alfalfa hay and 46% of oats hay) and a grain-based diet (45% of corn meal and 11% of soybean meal) for 30 days, and ruminal fluid samples were collected at six different timepoints from T2 to T22 in one day, and the composition and diversity of the bacterial communities in rumen microbiomes of the sheep in the Grain-diet and Hay-diet groups at different timepoints were analyzed through 16S rRNA sequencing.
Project description:<p>Heat stress is an important issue in dairy cattle feeding management affecting summer health and economic efficiency. In recent years, global climate change has led to an increase in atmospheric CO2 content and average daily temperature, making heat stress a major challenge in dairy farming. This experiment combined 16S rDNA sequencing, metagenomic sequencing and metabolomic analysis. In this experiment, 10 cows each of growing heifers, heifers and lactating cows were selected for sample collection in April and August. Ruminal fluid was collected and filtered through gauze, which was immediately transferred to liquid nitrogen prior to macrogenomic, 16S rDNA sequencing and metabolomic analyses.</p>
Project description:Cattle are often fed high concentrate diets to increase energy intake and improve overall animal performance. Such diets also cause changes in fermentation patterns and epithelial function. However, the molecular mechanisms involved in regulating epithelial function for cattle fed high concentrate diets have not been elucidated. In this study, we aimed to gain a broad overview of the involved molecular mechanisms by detecting differentially expressed genes (DEG) in rumen tissue from dairy cows fed a low concentrate (LC; 8%) compared to a high concentrate (HC; 64%) diet using a bovine-specific microarray platform containing 16,846 unique gene loci and 5,943 ESTs from the bovine genome. Feeding the HC diet increased the total volatile fatty acid concentration and markedly reduced ruminal pH, suggesting that the dietary treatments used did induce changes in ruminal fermentation. In response to changes in the ruminal environment, a total of 5,200 elements were detected as DEG in ruminal tissue with >1.5-fold expression change (P < 0.05) for cows fed HC relative to LC. Of the 5,200 DEG, 2,233 and 2,967 were up- and down-regulated, respectively. The GENECODIS analysis elucidated that relationships among the DEG represented 19 annotations characterized with GO molecular function and KEGG pathways with 26 DEG identified in multiple annotations such as calcium signaling and gap junction pathways. Among those DEG that were identified numerous times, catalytic subunit of cAMP-dependent protein kinase (PRKACB) was down-regulated in ruminal tissue from cows fed HC, suggesting that this gene may have important roles including regulation of cell proliferation and differentiation, and intracellular pH regulation. Two-condition experiment, High concentrate vs. Low concentrate diets. Biological replicates: 5 high concentrate fed, 5 low concentrate, independently grown and harvested. Two replicates per array.
Project description:In order to investigate the diurnal oscillations of ruminal protozoa, and their responses to the changes in different feeding patterns, we conducted an animal experiment by feeding the sheep ad libitum with a hay-based diet (50% of alfalfa hay and 46% of oats hay) and a grain-based diet (45% of corn meal and 11% of soybean meal) for 30 days, and ruminal fluid samples were collected at six different timepoints from T2 to T22 in one day, and the composition and diversity of the protozoal communities in rumen microbiomes of the sheep in the Grain-diet and Hay-diet groups at different timepoints were analyzed through 18S rRNA sequencing.
2025-01-08 | GSE286155 | GEO
Project description:Duodenal digesta 16s rDNA sequencing raw data of Tibetan sheep
Project description:Cattle are often fed high concentrate diets to increase energy intake and improve overall animal performance. Such diets also cause changes in fermentation patterns and epithelial function. However, the molecular mechanisms involved in regulating epithelial function for cattle fed high concentrate diets have not been elucidated. In this study, we aimed to gain a broad overview of the involved molecular mechanisms by detecting differentially expressed genes (DEG) in rumen tissue from dairy cows fed a low concentrate (LC; 8%) compared to a high concentrate (HC; 64%) diet using a bovine-specific microarray platform containing 16,846 unique gene loci and 5,943 ESTs from the bovine genome. Feeding the HC diet increased the total volatile fatty acid concentration and markedly reduced ruminal pH, suggesting that the dietary treatments used did induce changes in ruminal fermentation. In response to changes in the ruminal environment, a total of 5,200 elements were detected as DEG in ruminal tissue with >1.5-fold expression change (P < 0.05) for cows fed HC relative to LC. Of the 5,200 DEG, 2,233 and 2,967 were up- and down-regulated, respectively. The GENECODIS analysis elucidated that relationships among the DEG represented 19 annotations characterized with GO molecular function and KEGG pathways with 26 DEG identified in multiple annotations such as calcium signaling and gap junction pathways. Among those DEG that were identified numerous times, catalytic subunit of cAMP-dependent protein kinase (PRKACB) was down-regulated in ruminal tissue from cows fed HC, suggesting that this gene may have important roles including regulation of cell proliferation and differentiation, and intracellular pH regulation.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs), particularly butyrate, in regulating ruminal homeostasis in vivo isolated epithelial cells. However, little is known about other SCFAs like acetate or propionate, and the interaction between rumen microbes and epithelial immunity are rarely reported. Here, we firstly combined infusion of three SCFAs, to study their different roles in ruminal development, antioxidant capacity, barrier functions, and immunity, as well as cross-talk with ruminal microbiome (16S rRNA sequencing data of rumen digesta) and derived transcriptome (RNA-Seq) and metabolism using an in vivo goat model.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs), particularly butyrate, in regulating ruminal homeostasis in vivo isolated epithelial cells. However, little is known about other SCFAs like acetate or propionate, and the interaction between rumen microbes and epithelial immunity are rarely reported. Here, we firstly combined infusion of three SCFAs, to study their different roles in ruminal development, antioxidant capacity, barrier functions, and immunity, as well as cross-talk with ruminal microbiome (16S rRNA sequencing data of rumen digesta) and derived transcriptome (RNA-Seq) and metabolism using an in vivo goat model.