Project description:Our goal is to convert methane efficiently into liquid fuels that may be more readily transported. Since aerobic oxidation of methane is less efficient, we focused on anaerobic processes to capture methane, which are accomplished by anaerobic methanotrophic archaea (ANME) in consortia. However, no pure culture capable of oxidizing and growing on methane anaerobically has been isolated. In this study, Methanosarcina acetivorans, an archaeal methanogen, was metabolically engineered to take up methane, rather than to generate it. To capture methane, we cloned the DNA coding for the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable archaeal organism from a Black Sea mat into M. acetivorans to effectively run methanogenesis in reverse. The engineered strain produces primarily acetate, and our results demonstrate that pure cultures can grow anaerobically on methane.
2015-12-20 | GSE66445 | GEO
Project description:kinetics of nitrate-dependent anaerobic methane oxidation
Project description:Gambelli et al., 2021, investigate methylomirabilis bacteria, which perform anaerobic methane oxidation coupled to nitrite reduction via an intra-aerobic pathway to produce carbon dioxide and dinitrogen gas. These bacteria possess an unusual polygonal cell shape with sharp ridges that run along the cell body. Previously, a putative surface protein layer (S-layer) was observed as the outermost cell layer of these bacteria which has been further investigated in this study. Corresponding author Laura van Niftrik, Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, 6525 AJ, the Netherlands.