Project description:In this study, we use DNA affinity purification sequencing to identiy genome-wide binding of LFY transcription factor, a master regulator of flower development in Arabidopsis. We generated two sets of data, one using genomic DNA from plant tissue, thus retain DNA methylation, as probe for DNA affinity purification (DAP-seq dataset), and the other using PCR amplified genomic DNA (without DNA methylation; AmpDAP-seq dataset).
Project description:Characterization of the activities of the transcription factor that AG encodes throughout flower development using perturbation assays and ChIP-Seq in combination with a floral induction system (FIS) that allows a stage-specific analysis of flower development. Examination of genomic regions bound by fully functional AG-GFP protein at approx floral stage 4-5 as compared to a negative control sample.
Project description:Characterization of the activities of the transcription factors that AP3 and PI encode throughout flower development using perturbation and ChIPSeq assays in combination with a floral induction system (FIS) that allows a stage-specific analysis of flower development. Examination of genomic regions bound by fully functional AP3-GFP and PI-GFP proteins at approx floral stage 4-5 as compared to a negative control sample
Project description:Analyses of new genomic, transcriptomic or proteomic data commonly result in trashing many unidentified data escaping the ‘canonical’ DNA-RNA-protein scheme. Testing systematic exchanges of nucleotides over long stretches produces inversed RNA pieces (here named “swinger” RNA) differing from their template DNA. These may explain some trashed data. Here analyses of genomic, transcriptomic and proteomic data of the pathogenic Tropheryma whipplei according to canonical genomic, transcriptomic and translational 'rules' resulted in trashing 58.9% of DNA, 37.7% RNA and about 85% of mass spectra (corresponding to peptides). In the trash, we found numerous DNA/RNA fragments compatible with “swinger” polymerization. Genomic sequences covered by «swinger» DNA and RNA are 3X more frequent than expected by chance and explained 12.4 and 20.8% of the rejected DNA and RNA sequences, respectively. As for peptides, several match with “swinger” RNAs, including some chimera, translated from both regular, and «swinger» transcripts, notably for ribosomal RNAs. Congruence of DNA, RNA and peptides resulting from the same swinging process suggest that systematic nucleotide exchanges increase coding potential, and may add to evolutionary diversification of bacterial populations.