Project description:Deadwood plays a crucial role in forest ecosystems, but we have limited information about the specific fungal taxa and extracellular lignocellulolytic enzymes that are actively involved in the decomposition process in situ. To investigate this, we studied the fungal metaproteome of twelve deadwood tree species in a replicated, eight-year experiment. Key fungi observed included genera of white-rot fungi (Basidiomycota, e.g. Armillaria, Hypholoma, Mycena, Ischnoderma, Resinicium), brown-rot fungi (Basidiomycota, e.g. Fomitopsis, Antrodia), diverse Ascomycota including xylariacous soft-rot fungi (e.g. Xylaria, Annulohypoxylon, Nemania) and various wood-associated endophytes and saprotrophs (Ascocoryne, Trichoderma, Talaromyces). These fungi used a whole range of extracellular lignocellulolytic enzymes, such as peroxidases, peroxide-producing enzymes, laccases, cellulases, glucosidases, hemicellulases (xylanases) and lytic polysaccharide monooxygenases (LPMOs). Both the fungi and enzymes were tree-specific, with specialists and generalists being distinguished by network analysis. The extracellular enzymatic system was highly redundant, with many enzyme classes of different origins present simultaneously in all decaying logs. Strong correlations were found between peroxide-producing enzymes (oxidases) and peroxidases as well as LPMOs, and between ligninolytic, cellulolytic and hemicellulolytic enzymes. The overall protein abundance of lignocellulolytic enzymes was reduced by up to -30% in gymnosperm logs compared to angiosperm logs, and gymnosperms lacked ascomycetous enzymes, which may have contributed to the lower decomposition of gymnosperm wood. In summary, we have obtained a comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in several temperate forest tree species, which can help to improve our understanding of the complex ecological processes in forest ecosystems.
Project description:Unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in global carbon cycle. In this study, we analyzed proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, while growing on solid spruce wood, and defined a core set of CAZymes that was shared between these species including the orthologous enzymes. Similar production pattern of these CAZymes indicate their key role in plant biomass degradation and need for their further biochemical characterization. The obtained results give an insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to exploitation of white rot fungi and their enzymes in biotechnological applications.
2022-08-08 | PXD030609 | Pride
Project description:Wood-inhabiting fungi along climatic gradients
Project description:The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study we evaluated how well the white-rot fungus Dichomitus squalens has adapted to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analysed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant polysaccharides not present in its natural habitat.
2017-01-05 | GSE79674 | GEO
Project description:Metabarcoding of wood- and bark-inhabiting fungi
Project description:The genus Armillaria spp. (Fungi, Basidiomycota) includes devastating pathogens of temperate forests and saprotrophs that decay wood. Pathogenic and saprotrophic Armillaria species can efficiently colonize and decay woody substrates, however, mechanisms of wood penetration and colonization are poorly known. We assayed the colonization and decay of autoclaved spruce roots using the conifer-specialists Armillaria ostoyae and A. cepistipes using transcriptomic and proteomic data. Transcript and protein levels were altered more extensively in the saprotrophic A. cepistipes than in the pathogenic A. ostoyae and in invasive mycelia of both species compared to their rhizomorphs. Diverse suites of carbohydrate-active enzyme genes (CAZymes), in particular pectinolytic ones and expansins, were upregulated in both species, whereas ligninolytic genes were mostly downregulated. Our gene expression data, together with previous comparative genomic and decay-chemistry analyses suggest that wood decay by Armillaria differs from that of typical white rot fungi and shows features resembling soft rot. We propose that Armillaria species have modified the ancestral white rot machinery so that it allows for selective ligninolysis based on environmental conditions and/or host types.
Project description:The genus Armillaria spp. (Fungi, Basidiomycota) includes devastating pathogens of temperate forests and saprotrophs that decay wood. Pathogenic and saprotrophic Armillaria species can efficiently colonize and decay woody substrates, however, mechanisms of wood penetration and colonization are poorly known. We assayed the colonization and decay of autoclaved spruce roots using the conifer-specialists Armillaria ostoyae and A. cepistipes using transcriptomic and proteomic data. Transcript and protein levels were altered more extensively in the saprotrophic A. cepistipes than in the pathogenic A. ostoyae and in invasive mycelia of both species compared to their rhizomorphs. Diverse suites of carbohydrate-active enzyme genes (CAZymes), in particular pectinolytic ones and expansins, were upregulated in both species, whereas ligninolytic genes were mostly downregulated. Our gene expression data, together with previous comparative genomic and decay-chemistry analyses suggest that wood decay by Armillaria differs from that of typical white rot fungi and shows features resembling soft rot. We propose that Armillaria species have modified the ancestral white rot machinery so that it allows for selective ligninolysis based on environmental conditions and/or host types.
2020-05-04 | GSE149701 | GEO
Project description:composition of wood-inhabiting fungi within residual stumps